Teorema di Carnot

Abbiamo visto cosa è il ciclo di Carnot e qual è la sua importanza, ma non è da confondersi con il teorema di Carnot, che è altrettanto importante in termodinamica. Vediamo cosa afferma e come si dimostra insieme!

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Need help?
Meet our AI Assistant

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Teorema di Carnot?
Ask our AI Assistant

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Salta a un capitolo chiave

    Ciclo di Carnot

    Prima di enunciare il teorema di Carnot, facciamo un breve riepilogo sul ciclo di Carnot e la macchina di Carnot, che ci torneranno utili nello studio del teorema.

    Macchina di Carnot

    Una macchina di Carnot è un'ipotetica macchina termica che agisce tra due sorgenti termiche a temperature \(T_1\) e \(T_2\) con \(T_1> T_2\). In particolare la macchina di Carnot esegue il ciclo di Carnot, una serie ciclica di trasformazioni termodinamiche di un gas perfetto composta dalle quattro seguenti trasformazioni:

    1. Tra il punto \(1\) e il punto \(2\) si ha una trasformazione isoterma in cui il gas si espande, la pressione diminuisce e la temperatura rimane costante.
    2. Tra il punto \(2\) e il punto \(3\) si ha una trasformazione adiabatica in cui il gas si espande, riducendo la sua temperatura e pressione.
    3. Tra il punto \(3\) e il punto \(4\) si ha una trasformazione isoterma in cui il gas si contrae, aumenta la pressione e la temperatura rimane costante.
    4. Tra il punto \(4\) e il punto \(1\) si ha una trasformazione adiabatica in cui il gas si contrae, aumentando pressione e temperatura.

    Nel compimento del ciclo, la macchina di Carnot assorbe il calore \(Q_1\) durante l'espansione isoterma e ne cede una parte \(Q_2\) durante la contrazione isoterma.

    Teorema di Carnot Trasformazioni StudySmarterFig. 1 - Diagramma p-V delle trasformazioni nel ciclo di Carnot.

    Rendimento macchina di Carnot

    Come abbiamo già visto, il rendimento di una macchina di Carnot perfetta è dato da

    \[\eta = 1 - \frac{T_2}{T_1}\,,\]

    dove \(T_2\) è la temperatura della sorgente a temperatura più bassa e \(T_1\) la sorgente a temperatura più alta.

    Per un approfondimento sul ciclo di Carnot abbiamo un articolo dedicato su StudySmarter!

    Teorema di Carnot: enunciato

    Il teorema di Carnot può essere enunciato in maniera concisa come

    Non esiste una macchina termica che opera tra due sorgenti termiche con un rendimento maggiore di quello della macchina di Carnot che opera tra le stesse sorgenti.

    Possiamo dividere questo enunciato in due affermazioni da dimostrare separatamente che affermano

    Tutte le macchine termiche reversibili con due sole sorgenti di calore hanno lo stesso rendimento \(\eta_{\text{Rev}}\) uguale a quello della macchina di Carnot che opera fra le stesse sorgenti:

    \[\eta_\text{Rev} = \eta_\text{Carnot}\,.\]

    Le macchine termiche reali (per definizione irreversibili) operanti tra due sole sorgenti di calore hanno un rendimento \(\eta_\text{Irr}\) sempre minore di quello della macchina di Carnot che opera fra le stesse sorgenti:

    \[\eta_\text{Irr} < \eta_\text{Carnot}\,.\]

    Teorema di Carnot: dimostrazione

    La dimostrazione del teorema di Carnot avviene per assurdo, assumendo che una macchina reversibile possa avere rendimento maggire della macchina di Carnot, cosa che, come vedremo, viola la seconda legge della termodinamica.

    Teorema di Carnot Dimostrazione StudySmarterFig. 2 - Diagramma della dimostrazione del teorema di Carnot.

    Partiamo con il dimostrare la prima affermazione. Ipotizziamo di avere due macchine termiche reversibili a temperature \(T_1\) e \(T_2\), con \(T_1 > T_2\) e aventi rendimento \(\eta_{R1}>\eta_{R2}\) (dove il pedice \(R\) indica che si tratta di macchine reversibili).

    Come sappiamo, la macchina termica \(1\) produrrà del lavoro \(W_1\). p Possiamo quindi immaginare di usare questo lavoro per far compiere alla macchina \(2\) un ciclo frigorifero Dalla definizione di rendimento e dalla condizione \(\eta_{R1}>\eta_{R2}\) otteniamo

    \[\frac{|W|}{Q_1} > \frac{|W|}{Q_1'}\implies \frac{1}{|Q_1|}>\frac{1}{|Q_1'|} \implies |Q_1|<|Q_1'|\,,\]

    dove con \(Q_1\) indichiamo il calore assorbito dalla macchina termica \(1\) e con \(Q_1'\) indichiamo il calore riemesso dalla macchina termica \(2\). Dalla definizione di lavoro e il risultato appena trovato otteniamo

    \[W = |Q_1|-|Q_2|=|Q_1'|-|Q_2'| \implies |Q_1'|-|Q_1|=|Q_2'|-|Q_2|\]\[\implies Q>0\,,\]

    dove \(Q_2\) e \(Q_2'\) sono rispettivamente il calore generato dalla macchina termica \(1\) e quello assorbito dalla macchina termica \(2\). Cosa significa questo risultato in breve? Se immaginiamo di vedere il risultato complessivo delle due macchine, troviamo che questa macchina preleva una certo calore \(Q\) dalla sorgente a temperatura \(T_2\) con \(Q = |Q_1'|-|Q_1| > 0\), ovvero la macchina risultante è un frigorifero perfetto.

    Ma se questa macchina è un frigorifero perfetto, non può essere \(\eta_{R1} > \eta_{R2}\)! Inoltre, se invertiamo le due macchine e il ragionamento che abbiamo appena visto e supponiamo che \(\eta_{R2} < \eta_{R1}\), arriviamo alla conclusione che la prima macchina sarebbe un frigorifero perfetto e che non può essere \(\eta_{R2} < \eta_{R1}\), per cui

    \[\boxed{\eta_{R1} = \eta_{R2} \implies \eta_{\text{Rev}} = \eta_\text{Carnot}}\]

    Dobbiamo ora dimostrare la seconda delle nostre formulazioni del teorema, che è però più semplice da verificare. Immaginiamo di avere una macchina termica reale e irreversibile e una reversibile che operano tra le sorgenti a temperatura \(T_1>T_2\) con rendimenti rispettivamente \(\eta_\text{Irr}\) e \(\eta_\text{Carnot}\).

    Iniziamo supponendo che \(\eta_\text{Irr}>\eta_\text{Carnot}\), se facciamo compiere un ciclo frigorifero alla macchina di Carnot usando il lavoro prodotto dalla macchina irreversibile e usando quanto visto poco fa, otteniamo che non è possibile avere \(\eta_\text{Irr}> \eta_\text{Carnot}\).

    D'altro canto, l'ipotesi che \(\eta_\text{Carnot}>\eta_\text{Irr}\) non può essere esclusa a priori, poiché la macchina irreversibile non può compiere un ciclo frigorifero per definizione, da cui otteniamo

    \[\eta_\text{Irr} \leq \eta_\text{Carnot}\,.\]

    Disuguaglianza di Clausius

    Si può anche dimostrare (ma non lo faremo) che il teorema di Carnot si può riscrivere sotto forma di disuguaglianza come

    \[\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \leq 0\,,\]

    condizione che, nel caso di cicli reversibili, si riporta alla condizione ideale

    \[\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0\,.\]

    Questa disuguaglianza si può ricondurre alla disuguaglianza (o teorema) di Clausius

    \[\sum_{i=1}^N \frac{Q_i}{T_i} \leq 0\,,\]

    ovvero, in un sistema che eseque una trasformazione ciclica (come il ciclo di Carnot) in cui scambia calore con \(N\) sorgenti, la somma dei rapporti tra il calore scambiato \(Q_i\) e la temperatura \(T_i\) delle sorgenti è sempre minore o uguale a \(0\).

    Questa particolare forma si può generalizzare quando vi sono una serie di trasformazioni infinitesime come

    \[\oint \frac{\delta Q}{T} \leq 0 \,,\]

    dove \(\delta Q\) è il calore scambiato in una trasformazione infinitesima con la sorgente a temperatura \(T\).

    Teorema di Carnot - Punti chiave

    • Una macchina di Carnot è un'ipotetica macchina termica che agisce tra due sorgenti termiche a temperature \(T_1\) e \(T_2\) con \(T_1> T_2\).
    • Una macchina di Carnot esegue il ciclo di Carnot tra le due sorgenti termiche.
    • Il rendimento di una macchina di Carnot perfetta è dato da \(\eta = 1 - \dfrac{T_2}{T_1}\),dove \(T_2\) è la temperatura della sorgente a temperatura più bassa e \(T_1\) la sorgente a temperatura più alta.
    • Il teorema di Carnot afferma che non esiste una macchina termica che opera tra due sorgenti termiche con un rendimento maggiore di quello della macchina di Carnot che opera tra le stesse sorgenti.
    • Il teorema di Carnot si può riscrivere come \(\dfrac{Q_1}{T_1} + \dfrac{Q_2}{T_2} \leq 0 \), rifacendosi al teorema di Clausius.
    Teorema di Carnot Teorema di Carnot
    Learn with 0 Teorema di Carnot flashcards in the free StudySmarter app
    Iscriviti con l'e-mail

    Hai già un account? Accedi

    Domande frequenti riguardo Teorema di Carnot

    Cosa dice il teorema di Carnot?

    Il teorema di Carnot afferma che non esiste una macchina termica che opera tra due sorgenti termiche con un rendimento maggiore di quello della macchina di Carnot che opera tra le stesse sorgenti.

    Qual è il rendimento della macchina di Carnot?

    Il rendimento del ciclo di Carnot è dato dalla formula η = 1 - T1/T2, dove T1 e T2 sono le temperature delle sorgenti termiche tra cui opera il ciclo con T1>T2.

    Save Article

    Discover learning materials with the free StudySmarter app

    Iscriviti gratuitamente
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Fisica Teachers

    • 7 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Iscriviti per sottolineare e prendere appunti. É tutto gratis.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Iscriviti con l'e-mail