Trasmissione del calore per irraggiamento
Abbiamo visto nell'articolo sul calore che quest'ultimo può propagarsi per conduzione, convezione e irraggiamento. Mentre conduzione e convezione hanno bisogno di un messo per trasferire l'energia da una regione a un'altra, nel trasferimento per irraggiamento non è necessario alcun mezzo di propagazione. Un noto esempio di irraggiamento è il trasferimento di energia tra il Sole e la Terra.
L'irraggiamento è un modo di propagazione del calore sotto forma di emisisone di onde elettromagnetiche.
Legge di Stefan-Boltzmann
L'intensità della radiazione emessa dipende dalla temperatura del corpo che la emette. Nello specifico, l'energia emessa per unità di tempo e superficie da un corpo a temperatura \(T\) è data dalla legge di Stefan-Boltzmann:
\[ \epsilon = \sigma e T^4\]
dove \( \sigma = 5{,}67 \times 10^{-8} \, \frac{\mathrm J}{ \mathrm m^2 \, \mathrm s \, \mathrm K^4}\) è la costante di Stefan-Boltzmann, \(e\) è l'emissività del corpo e \(T\) la temperatura in \(\mathrm K\) che varia da 0 (emissività nulla) a 1 (emissività massima).
Lo spettro elettromagnetico
La radiazione elettromagnetica viaggia nello spazio sotto forma di onde elettromagnetiche. La radiazione si presenta sotto forma di pacchetti d'onda chiamati fotoni. I fotoni dei diversi tipi di radiazioni hanno lunghezze d'onda (e quindi frequenze) diverse, per cui lo spettro elettromagnetico è suddiviso in diverse "bande".
Se vuoi saperne di più su cosa sono i fotoni, abbiamo diversi articoli dedicati nella sezione di Fisica Quantistica!
Le radiazioni con una lunghezza d'onda minore hanno una frequenza maggiore e viceversa: le due quantità sono inversamente proporzionali tra loro. La frequenza di un'onda elettromagnetica è direttamente proporzionale alla sua energia, quindi al diminuire della lunghezza d'onda aumenta l'energia.
Tutte le onde elettromagnetiche viaggiano alla stessa velocità: la velocità della luce.
Fig. 1 - I diversi tipi di radiazione sono mostrati in ordine di lunghezza d'onda crescente e di energia decrescente da sinistra a destra.
I raggi gamma hanno la lunghezza d'onda più corta tra tutti i tipi di radiazioni. Ciò significa che ha la frequenza più alta e la maggiore energia. Le onde radio hanno la lunghezza d'onda più lunga. La radiazione elettromagnetica che possiamo vedere si trova nella sezione della luce visibile, al centro del diagramma qui sopra. La parte dello spettro che possiamo vedere si estende un po' nella radiazione infrarossa (appena dopo la luce rossa) da un lato e nella radiazione ultravioletta dall'altro (appena dopo la luce viola).
Calore e radiazione infrarossa
La radiazione infrarossa è costituita da fotoni che hanno una lunghezza d'onda maggiore di quella della luce visibile. La radiazione infrarossa è spesso associata al calore poiché ogni oggetto a temperatura maggiore dello 0 assoluto emette radiazione in questa banda.
La radiazione infrarossa viene utilizzata in diversi apparecchi, tra cui termocamere a infrarossi. Questi apparecchi sono estremamente sensibili a leggere differenze di temperatura. I sensori infrarossi convertono infatti la radiazione in arrivo in un'immagine dove temperature diverse sono rappresentate da colori diversi.
Fig. 2 - Immagine di un computer portatile ripresa da una termocamera.
È fondamentale capire che ogni oggetto emette radiazioni elettromagnetiche la cui frequenza varia a seconda della temperatura. Il corpo umano emette radiazioni elettromagnetiche nell'infrarosso, corrispondente alla temperatura del nostro corpo (circa 36 °C)!
Assorbimento ed emissione di radiazioni
Gli oggetti assorbono ed emettono radiazioni in quantità diverse. Ciò dipende dalla superficie del materiale su cui la radiazione è incidente.
- Le superfici scure e opache sono buoni assorbitori e buoni emettitori.
- Le superfici chiare e lucide sono cattivi assorbitori e cattivi emittitori.
Gli oggetti scuri emettono di più perché assorbono meglio tutti i tipi di radiazioni elettromagnetiche. Un esempio di buon assorbitore è il cruscotto nero della maggior parte delle automobili; probabilmente avrete toccato uno di questi oggetti in una giornata calda e vi sarete accorti che diventano molto caldi! Le superfici lucide, come le lastre di metallo lucidate, assorbono pochissime radiazioni e riflettono la maggior parte delle radiazioni in entrata.
Un thermos è progettato per evitare il più possibile la perdita di calore. Il contenitore contiene una cavità sotto vuoto. La conduzione e la convezione non possono avvenire nel vuoto, ma il calore può essere trasferito attraverso di esso per irraggiamento. La soluzione per ridurre le perdite per irraggiamento consiste nell'applicare un rivestimento riflettente sulle pareti.
Fig.3 - diagramma di un thermos che mostra la cavità tra pareti esterne e interne.
Si può fare un semplice esperimento per studiare come le diverse superfici emettono radiazioni. Si prende un cubo di Leslie, che ha quattro facce con materiali diversi su ogni superficie (nella versione dell'esperimento descritto da Tyndall, una delle facce è rivestita d'oro, un'altra d'argento, un'altra di rame e un'altra da una vernice a base di colla di pesce). Il cubo ha anche un foro nella parte superiore, in modo da potervi versare acqua bollente.
Fig. 4 - Disegno del brevetto di un cubo Leslie e del dispositivo di misurazione della temperatura. Il cubo di Leslie ha quattro facce diverse e un foro sigillabile in cima per versare l'acqua.
Dopo aver versato l'acqua bollente all'interno, si chiude il coperchio. Dopo un breve periodo di tempo, la temperatura del cubo sarà uguale a quella dell'acqua al suo interno. A questo punto si posiziona un rilevatore di radiazioni a una distanza uguale da tutte le facce del cubo.
Nella figura sottostante mostra le fotografie scattate da una macchina fotografica a infrarossi. La faccia scura è quella con emissività maggiore, come rilevato dalla macchina fotografica (colore rosso).
Fig. 5 - L'immagine di un cubo di Leslie ripresa con una telecamera a infrarossi dopo che ogni lato ha raggiunto la stessa temperatura.
L'effetto serra
L'effetto serra è un fenomeno dovuto ai dei gas presenti nella nostra atmosfera, detti "gas serra", che assorbono e riflettono la radiazione emessa dalla Terra impedendo quindi l'irradiazione verso spazio. Vediamo questo fenomeno più nel dettaglio.
Una parte della radiazione proveniente dal Sole che raggiunge la Terra viene riemessa sotto forma di radiazione IR. I gas serra assorbono e riemettono parte di questa radiazione, reindirizzandola verso la superficie terrestre. Questo fa sì che la Terra sia mantenuta a una temperatura media di circa 15 °C. In assenza dei gas serra, la temperatura sulla Terra sarebbe molto inferiore!
Il fenomeno dell'effetto serra non è, quindi, negativo in sé. Il problema di cui oggi si parla è sorto in seguito all'industrializzazione: infatti, quest'ultima ha provocato un aumento di gas serra nell'atmosfera. E' dunque importante capire l'effetto di questo aumento di gas serra sul nostro pianeta e, in particolare, sulla temperatura.
Tra i gas serra più noti vi sono l'anidride carbonica e il metano.
Fig. 6 - Diagramma dell'effetto serra.
Il nome deriva dal processo utilizzato per mantenere le serre calde. Per costruire una serra si utilizza un vetro che lascia passare con facilità la radiazione del sole. Questa radiazione viene assorbita dalle piante e dal terreno all'interno della serra. La radiazione viene poi emessa dalle piante a una lunghezza d'onda maggiore. Questa radiazione non viene trattenuta dal vetro, che è opaco rispetto a radiazioni di maggiori lunghezze d'onda come la radiaziona IR.
La temperatura interna smette di aumentare quando la perdita di calore attraverso il vetro per conduzione è bilanciata dall'energia assorbita dal sole. In questo modo il calore viene intrappolato all'interno della serra e rende possibile la crescita di diverse piante.
Irraggiamento - Punti Chiave
- L'irraggiamento è un modo di propagazione del calore sotto forma di emissione di onde elettromagnetiche.
- Lo spettro elettromagnetico mostra i diversi tipi di radiazione al variare della lunghezza d'onda (o della frequenza). La radiazione infrarossa (IR) ha una lunghezza d'onda superiore a quella della luce visibile.
- Ogni corpo emette radiazioni elettromagnetiche.
- L'intensità della radiazione emessa dipende dalla temperatura del corpo che la emette.
- Le superfici scure e opache sono i migliori assorbitori ed emettitori di radiazione elettromagnetica, mentre le superfici chiare e lucide sono le peggiori.
- I gas presenti nell'atmosfera assorbono le radiazioni IR riflesse dalla superficie della Terra e mantengono il pianeta caldo: si tratta del cosiddetto effetto serra.
References
- Fig. 3 - Vacuum Dewar Flask Red.svg (https://commons.wikimedia.org/wiki/File:Vacuum_Dewar_Flask_Red.svg) by Acdx is licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)
- Fig. 6 - The Greenhouse Effect.svg (https://commons.wikimedia.org/wiki/File:The_Greenhouse_Effect.svg) by Craniumation is licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/)
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel