Ottica geometrica: definizione
Vediamo subito una definizione formale di ottica geometrica:
L'ottica geometrica è quella branca dell'ottica che studia la luce come se fosse costituita da raggi rettilinei che vengono riflessi e rifratti a contatto con superfici riflettenti o di materiali diversi.
L'ottica geometrica si occupa, quindi, di studiare tutti quei fenomeni che possono essere descritti pensando alla propagazione della luce come una serie di raggi rettilinei, studiando le interazioni con lenti, specchi, prismi e in generale oggetti più grandi della lunghezza d'onda della luce studiata.
Questa branca si basa su tre leggi fondamentali, che andiamo a vedere.
Fig. 1 - Un'immagine tratta dal De multiplicatone specierum di Roger Bacon. Uno dei primi studi sull'ottica geometrica.
Legge di propagazione rettilinea
La legge di propagazione rettilinea è il concetto alla base dell'ottica geometrica: secondo questa legge, infatti, la luce si propaga lungo delle rette. In questo modo, lo studio dei fenomeni ottici diventa un esercizio di geometria basato sullo studio degli angoli di riflessione e rifrazione della luce.
Questo approccio è, ovviamente, limitato, sebbene molto efficace per gli studi di fenomeni semplici. Vedremo più avanti quali sono queste limitazioni.
Leggi della riflessione
Le leggi della riflessione descrivono il comportamento di un raggio di luce che incide su una superficie riflettente e viene riflesso. Esistono due principali leggi della rifrazione con cui si possono descrivere i fenomeni dovuti a superfici riflettenti:
Il raggio incidente e quello riflesso si trovano sullo stesso piano che è definito dal raggio incidente e dalla perpendicolare alla superficie.
L'angolo che il raggio riflesso forma con la perpendicolare alla superficie riflettente è lo stesso che forma l'angolo incidente. In altre parole, possiamo dire che \(\theta_i = \theta_r\).
Leggi della rifrazione
La rifrazione è invece quel fenomeno per cui la luce incidente su un mezzo trasparente viene deviata nel suo percorso. Si pensi a quando guardiamo un oggetto dietro ad un bicchiere d'acqua, questo apparirà deformato e deviato. Questo è l'effetto della rifrazione.
Anche in questo caso le leggi che governano questo fenomeno sono due:
Similarmente alla riflessione, il raggio uscente dalla superficie rifrangente si trova sullo stesso piano che il raggio incidente genera con la normale alla superficie.
Gli angoli del raggio incidente e rifratto rispetto alla normale alla superficie seguono la cosiddetta legge di Snell, ovvero \(n_1 sin\theta_1 = n_2 sin \theta_2\), dove \(n_1\) e \(n_2\) sono gli indici di rifrazione dei materiali di propagazione dell'onda incidente e rifratta rispettivamente.
Questa legge ci permette di introdurre un coefficiente molto importante nell'ottica, che è l'indice di rifrazione \(n\), che dipende dal materiale con cui sono costituiti i mezzi.
Lenti sottili
Una delle principali materie di studio dell'ottica geometrica sono le lenti sottili, nell'articolo su lenti e specchi vedremo in particolare come esistano lenti convergenti (convesse) o divergenti (concave), le leggi geometriche che le regolano e qualche esempio pratico. In particolare, ci occuperemo di lenti sferiche sottili, ovvero lenti dallo spessore molto contenuto (in cui non dobbiamo considerare effetti di rifrazione interna) le cui facce sono sezioni di una sfera.
Vedremo anche che esiste un'equazione (detta delle lenti sottili) che, molto semplicemente, descrive bene la formazione delle immagini da parte di una lente ottica, vediamola brevemente:
\[\frac{1}{p}+\frac{1}{q}=\frac{1}{f}\]
dove \(p\) è la distanza tra l'oggetto e la lente, \(q\) è la distanza dell'immagine dalla lente e \(f\) è la lunghezza focale della lente.
Un'altra importante proprietà delle lenti è l'ingrandimento, che può essere calcolata con la semplicissima formula
\[I = \frac{q}{p}\]
dove \(q\) e \(p\) sono gli stessi della formula per le lenti sottili.
Fig. 2 - Esempi di diversi tipi di lente
Specchi curvi
Un altro elemento importante nello studio dell'ottica geometrica sono gli specchi. In particolare vedremo gli specchi sferici, essendo più interessanti di quelli piani da studiare, questi ultimi infatti possono essere praticamente completamente descritti usando la legge della riflessione.
Equazione di punti coniugati
L'equazione dei punti coniugati viene usata per calcolare a che distanza dallo specchio si forma l'immagine riflessa. Questa legge lega le distanze tra specchio e oggetto, immagine e specchio e la distanza focale dello specchio. La annunciamo brevemente, rimandando all'articolo su lenti e specchi per una trattazione più approfondita.
L'equazione dei punti coniugati è molto semplice:
\[\frac{1}{p}+\frac{1}{p}=\frac{1}{f}\]
dove \(p\) è la distanza tra lo specchio e l'oggetto riflesso, \(q\) è la distanza dell'immagine riflessa dallo specchio e \(f\) è la lunghezza focale dello specchio. Come si può vedere questa legge assomiglia molto a quella delle lenti sottili!
Limiti dell'ottica geometrica
Purtroppo, non tutti i fenomeni ottici sono descrivibili con le sole leggi dell'ottica geometrica. Pensiamo ad esempio ad una macchia d'olio sull'asfalto. Questa crea un arcobaleno di colori diversi che possiamo osservare se la guardiamo direttamente. Questo fenomeno è chiamato interferenza da lamina sottile, e non è completamente spiegabile con le leggi che abbiamo visto.
I fenomeni di interferenza, alcuni fenomeni di diffrazione e in generale tutti i fenomeni di interazione tra la luce e oggetti più piccoli della sua lunghezza d'onda non sono spiegabili attraverso le leggi dell'ottica geometrica, che ha però il vantaggio di descrivere le interazione della luce con lenti e specchi estremamente facilmente.
Per poter spiegare a pieno questi fenomeni, vi consigliamo gli articoli su rifrazione, diffrazione e interferenza, in cui esaminando la luce come un fenomeno ondulatorio, possiamo comprendere alcuni di queste interazioni.
Leggi dell'ottica geometrica - Punti chiave
- L'ottica geometrica è quella branca dell'ottica che studia la luce come se fosse costituita da raggi rettilinei che vengono riflessi e rifratti a contatto con superfici riflettenti o di materiali diversi.
- Secondo la legge di propagazione rettilinea la luce si propaga lungo delle rette.
- Le leggi della riflessione dicono che il raggio riflesso giace sul piano descritto dal raggio incidente e la normale alla superficie riflettente e che l'angolo con cui questo si riflette è uguale a quello con cui incide sulla superficie.
- Le leggi della rifrazione dicono che il raggio rifratto giace sul piano definito dal raggio incidente sulla superficie rifrangente e la normale alla superficie e che gli angoli di riflessione e rifrazione seguono la legge di Snell: \(n_1 sin\theta_1 = n_2 sin \theta_2\) .
- Le lenti sferiche sottili sono lenti dallo spessore molto contenuto (in cui non dobbiamo considerare effetti di rifrazione interna) le cui facce sono sezioni di una sfera.
- Un altro elemento importante nello studio dell'ottica geometrica sono gli specchi.
References
- Fig. 2 - Lenses it.svg (https://commons.wikimedia.org/wiki/File:Lenses_it.svg) by ElfQrin is licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/deed.en)
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel