Onde longitudinali e onde trasversali: caratteristiche generali
Le onde periodiche sono onde con uno schema ripetitivo, di solito nello spazio. Mentre, ad esempio, le onde dell'oceano (un controesempio) non sono perfettamente sincronizzate per apparire su una spiaggia a intervalli regolari, e quindi nemmeno la loro distanza è sempre la stessa, quando lanciamo un sasso in un lago, la distanza tra le onde dell'acqua è quasi esattamente la stessa, anche se, naturalmente, queste onde non durano per sempre.
Dobbiamo anche ricordare che le onde non sempre spostano la materia del mezzo in cui si propagano. Mentre le onde oceaniche spostano l'acqua, le vibrazioni su una corda non spostano materiale, poiché la corda rimane nella sua posizione iniziale.
Le principali caratteristiche delle onde periodiche sono:
Lunghezza d'onda: la lunghezza che separa due picchi di un'onda, solitamente indicata con \(\lambda\).
Frequenza: il numero di lunghezze d'onda compiute per unità di tempo, solitamente indicato con \(f\). Conoscendo la velocità \(v\) con cui viaggia l'onda, frequenza e lunghezza d'onda sono correlate dalla seguente equazione: \[v = f\:\lambda\]
Ampiezza: indicata con \(A\) è l'altezza tra una cresta e una valle di una stessa onda.
Period: indicata con \(T\) è il tempo che l'onda impiega a percorrere una lunghezza d'onda. È l'inverso della frequenza: \[T = \frac{1}{f}\]
Fase: solitamente indicata con \(\phi\), deriva dalla descrizione matematica dell'onda. È una misura dello stato di oscillazione di un punto. Se due punti distano una lunghezza d'onda l'uno dall'altro, sono in fase poiché compiono esattamente gli stessi movimenti. Se due punti si trovano a mezza lunghezza d'onda l'uno dall'altro, si dice che sono in "opposizione di fase" perché compiono movimenti opposti (uno sale quando l'altro scnede). La fase è in qualche modo la misura della somiglianza dei punti di un'onda. Ha un valore compreso tra \(0\) e \(2\pi\). Ogni volta che un punto completa una lunghezza d'onda, il numero si azzera da \(2\pi\) a \(0\).
In figura 1 possiamo vedere un'onda periodica, mentre in figura 2 possiamo vedere come un'onda si propaga nello spazio.
Fig. 1 - Diversi tipi di onde periodiche. Tutte e quattro queste onde hanno la stessa periodicità e ampiezza.
Fig. 2 - Un pacchetto d'onda, un esempio di onda non stazionaria.
Indipendentemente dalla loro natura, le onde trasferiscono energia da un punto dello spazio a un altro. L'intensità e l'efficienza di questo processo dipendono dalle varie caratteristiche dell'onda che abbiamo già esplorato.
Ad esempio, l'intensità di una sorgente luminosa dipende dall'ampiezza dell'onda: maggiore è l'ampiezza, più luminoso è il segnale. Ovvero, raddoppiando il numero di lampadine si ottiene il doppio dell'ampiezza. D'altra parte, scopriamo che anche la frequenza è legata all'energia, poiché indica la quantità di movimento che l'onda porta con sé. Per le radiazioni luminose, questo si traduce nel fatto che la luce blu e viola è più energetica di quella gialla o rossa.
Onde trasversali
Le onde trasversali sono caratterizzate dal fatto che la direzione di propagazione dell'onda è perpendicolare al campo che le genera. L'esempio più famoso di onda trasversale è la luce stessa. In figura 3 possiamo vedere una rappresentazione visiva delle onde elettromagnetiche. Si può notare che l'onda si muove in direzione perpendicolare a quella del campo elettrico (\(\vec{E}\)) e del campo magnetico (\(\vec{B}\)) che la compongono.
Fig. 3 - Le onde elettromagnetiche sono un esempio di onda trasversale.
Nel caso delle onde trasversali, la loro lunghezza d'onda determina la loro energia. Nella radiazione luminosa, la lunghezza d'onda (che è inversamente correlata alla frequenza) ha a che fare con il colore. Ad esempio, esiste solo una certa quantità di lunghezza d'onda della luce che possiamo vedere, questo parte dello spettro elettromagnetico viene spesso chiamato "visibile". Le lunghezze d'onda maggiori corrispondono alle radiazioni radio, come quelle che utilizziamo per le radio, mentre le lunghezze d'onda minori corrispondo ai raggi X che si usano in medicina.
Fig. 4 - Lo spettro elettromagnetico.
Onde longitudinali
Le onde longitudinali, invece, sono caratterizzate dal fatto che lo spostamento che generano è nella stessa direzione del loro movimento. Possiamo pensare al movimento di una molla che è stata tesa e rilasciata. L'aspetto fondamentale in questo caso è che la direzione è molto più limitata e che il movimento genera cambiamenti nella densità (a patto che ci sia un mezzo materiale), poiché alcune regioni vengono compresse o distese.In figura 5 possiamo osservare come si propaga un'onda longitudinale.
Fig. 5 - Propagazione di un'onda longitudinale
Onde longitudinali e onde trasversali: esempi
Per concludere, analizzeremo alcuni dei più importanti esempi di onde trasversali e longitudinali e le loro proprietà.Come abbiamo visto, le onde sonore e luminose sono ottimi esempi di onde longitudinali e trasversali, rispettivamente.Vediamo un esempio più pratico: i terremoti sono essenzialmente perturbazioni generate negli strati interni della terra che si propagano fino a raggiungere la superficie. Le onde che si generano sono particolari in quanto, propagandosi in alcuni mezzi solidi, gli spostamenti che provocano possono essere permanenti.Si distinguono:
Onde primarie/P, che sono onde longitudinali che viaggiano approssimativamente alla velocità del suono e possono muoversi attraverso qualsiasi materiale, solido o liquido.
Onde secondarie/S, che sono onde trasversali che viaggiano a circa il 60% della velocità del suono e possono muoversi solo attraverso materiali solidi.
Altri esempi di onde trasversali sono le vibrazioni di una corda di chitarra o quelle generate da una corda normale mentre una delle sue estremità viene tirata su e giù. Esempi di onde longitudinali sono le onde di uno tsunami, che hanno una componente trasversale ma spostano principalmente l'acqua nella direzione del loro movimento. Un altro esempio è rappresentato dagli ultrasuoni utilizzate, ad esempio, nelle ecografie, in cui si possono osservare sia componenti trasversali che longitudinali.
Onde longitudinali e onde trasversali - Punti chiave
Si distinguono due tipi di onde in base alla loro direzione di spostamento rispetto alla direzione del movimento: onde longitudinali e trasversali.
Le onde trasversali sono caratterizzate dal fatto che la direzione di propagazione dell'onda è perpendicolare alcampo che le genera. Tra le onde trasversali troviamo le onde elettromagnetiche.
Le onde longitudinali hanno solitamente a che fare con la materia che trasferisce il movimento dell'onda alle particelle vicine in modo simile alla pressione. Ciò accade, ad esempio, con il suono o con le onde dello tsunami.
A meno che non si tratti di fenomeni fondamentali, come l'elettromagnetismo e le sue onde, le onde hanno componenti sia longitudinali che trasversali.
References
- Fig. 1 - Format te ndryshme valore.gif (https://commons.wikimedia.org/wiki/File:Format_te_ndryshme_valore.gif) by Gentritt is licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/deed.en)
- Fig. 2 - Wave packet propagation (phase faster than group, dispersive).gif (https://commons.wikimedia.org/wiki/File:Wave_packet_propagation_(phase_faster_than_group,_dispersive).gif) by Becarlson (https://commons.wikimedia.org/wiki/User:Becarlson) is licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
- Fig. 3 - EM-Wave.gif (https://commons.wikimedia.org/wiki/File:EM-Wave.gif) by And1mu is licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
- Fig. 4 - Spettro elettromagnetico.png (https://commons.wikimedia.org/wiki/File:Spettro_elettromagnetico.png) by Claudio Oleari e Andrea Peri is licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/deed.en)
- Fig. 5 - Onde compression impulsion 1d 30 petit.gif (https://commons.wikimedia.org/wiki/File:Onde_compression_impulsion_1d_30_petit.gif) by Christophe Dang Ngoc Chan (cdang) (https://commons.wikimedia.org/wiki/User:Cdang) is licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/deed.en)
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel