In questo articolo definiremo le forze conservative e le metteremo a confronto con quelle non-conservative. Elencheremo inoltre le diverse forze conservative e non conservative e approfondieremo le nostre spiegazioni con alcuni esempi.
Forza conservativa: definizione
Quando si risolve un problema di fisica utilizzando l'energia, è importante sapere se una forza che agisce su un oggetto è una forza conservativa o una forza non conservativa. Definiamo queste forze per capire meglio la loro relazione con l'energia e il lavoro di un sistema. Quando il lavoro svolto da una forza è indipendente dalla traiettoria percorsa, questa forza è una forza conservativa. Ciò significa che per una forza conservativa il lavoro compiuto dipende solo dalle posizioni di partenza e di arrivo e non dal percorso compiuto per raggiungerle.
La gravità è un esempio di forza conservativa. La forza di gravità agisce su un pallone calciato da terra in aria, e il lavoro svolto sul pallone dalla gravità dipende solo dalla variazione dell'altezza. Quando la palla raggiunge di nuovo il suolo, il lavoro netto compiuto dalla gravità è pari a zero. Se in un sistema agiscono solo forze conservative, l'energia meccanica totale (la somma delle energie cinetiche e potenziali), è costante. Ciò significa che l'energia cinetica si trasforma in energia potenziale e viceversa senza alcuna perdita di energia meccanica.
Una forza si dice conservativa quando il lavoro che compie è indipendente dalla traiettoria percorsa, ma dipende solo dai punti iniziale e finale.
Fig. 1 - Il lavoro svolto dalla gravità, una forza conservativa, su un pallone calciato in aria dipende solo dalla variazione di altezza del pallone. Il lavoro svolto dalla resistenza dell'aria, una forza non conservativa, dipende dalla traiettoria percorsa.
Quando il lavoro svolto da una forza dipende dal percorso effettuato, questa forza è una forza non conservativa. La resistenza dell'aria è un esempio di forza non conservativa. Quando la resistenza dell'aria agisce sul pallone calciato in aria, agisce contrariamente al moto del pallone mentre questo va in aria e mentre ricade a terra, causando un rallentamento del pallone e quindi una perdita di energia cinetica. Il risultato è una minore energia meccanica. Questo non significa che la legge di conservazione dell'energia non sia corretta, ma solo che dobbiamo pensare ad altre forme di energia. Quando la resistenza dell'aria agisce negativamente sulla palla, una parte dell'energia cinetica si trasforma in energia termica, poiché la palla e l'aria circostante si riscaldano. Una forza che diminuisce l'energia meccanica di un sistema è chiamata forza dissipativa. Tutte le forze dissipative sono forze non conservative.
Una forza si dice non conservativa quando il lavoro che compie dipende dalla traiettoria percorsa.
Energia potenziale e forze conservative
Nell'articolo sull'energia potenziale, abbiamo accennato a come l'energia potenziale di un sistema derivi da forze conservative che compiono lavoro. Infatti, si parla di energia potenziale in un sistema solo quando le forze conservative compiono un lavoro.
Il lavoro compiuto da una forza conservativa è uguale alla variazione negativa dell'energia potenziale, \(W=-\Delta U\), e la variazione dell'energia cinetica è uguale al lavoro totale compiuto in un sistema, \(W_{net} = \Delta K\). Il lavoro totale compiuto in un sistema è composto dal lavoro compiuto dalle forze conservative e dal lavoro compiuto dalle forze non conservative, in modo che \(W_{net} = W_c + W_{nc} = \Delta K\).
Se sostituiamo il lavoro compiuto dalle forze conservative in questa equazione, otteniamo:
$$ \begin{aligned} W_c + W_{nc} &= \Delta K \\ -\Delta U + W_{nc} &= \Delta K \\ W_{nc} &= \Delta K + \Delta U \end{aligned} $$
Da questa equazione si può vedere che la variazione dell'energia cinetica e dell'energia potenziale, o la variazione dell'energia meccanica totale, è uguale al lavoro compiuto dalle forze non conservative che agiscono sugli oggetti del sistema.
Forze conservative e forze non conservative
Vediamo ora più nel dettaglio le differenze tra forze conservative e non conservative. Abbiamo già detto che le forze conservative sono indipendenti dal percorso, mentre quelle non conservative dipendono dal percorso. Pensiamo a una scatola che viene spinta su un pendio scosceso. La scatola viene poi spinta verso la posizione di partenza. Poiché la scatola è finita nel punto di partenza, si è mossa in un percorso chiuso. Il lavoro totale compiuto dalle forze conservative quando l'oggetto si muove in un percorso chiuso è sempre pari a zero. La forza conservativa che agisce sulla scatola nel nostro esempio è la forza di gravità; la variazione totale dell'altezza della scatola è zero, quindi la variazione di energia potenziale gravitazionale è zero.
La forza di spinta e la forza di attrito sono esempi di forze non conservative che agiscono sulla scatola, poiché dipendono dal percorso seguito. Come mostrato nell'immagine sottostante, la forza di spinta compie un lavoro positivo sulla scatola mentre sale e scende dal pendio, mentre l'attrito compie un lavoro negativo sulla scatola. Il lavoro netto compiuto da queste forze non è nullo una volta che la scatola ritorna alla sua posizione iniziale. Possiamo verificare se una forza è conservativa considerando il lavoro totale compiuto quando la forza sposta l'oggetto in un percorso chiuso; se il lavoro netto è zero, sappiamo che si tratta di una forza conservativa.
Fig. 2 - Il lavoro svolto dalle forze non conservative dipende dal percorso seguito, mentre il lavoro svolto dalle forze conservative non dipende dal percorso.
Un'altra differenza tra forze conservative e non conservative è che il lavoro svolto da una forza conservativa può essere invertito. Quando le forze conservative, come la gravità o la forza elastica, agiscono su un oggetto, immagazzinano energia potenziale che può essere convertita in energia cinetica per invertire il lavoro svolto. Quando una forza non conservativa, come l'attrito, agisce su un oggetto, l'energia cinetica si converte in energia termica e non è possibile recuperare l'energia termica dissipata. Pertanto, il lavoro compiuto da una forza non conservativa è irreversibile.
Forze conservative e non conservative: esempi
Nella tabella seguente trovi alcuni esempi di forze conservaitve e non conservative che abbiamo menzionato. Parleremo più avanti della forza elettrica.
Forze conservative | Forze non conservative |
Gravità | Resistenza dell'aria |
Forza elastica | Attrito |
Forza elettrica | Forza di spinta/trazione |
Le forze conservative e non conservative sono presenti in quasi tutti i problemi di fisica. Vediamo quindi un esempio.
Un blocco attaccato a una molla si muove lungo un pendio scosceso. Identificare le forze conservative che agiscono sul blocco.
Le forze conservative che agiscono sul blocco sono la forza della molla e la forza di gravità. Queste forze sono indipendenti dal percorso e conferiscono al sistema energia potenziale.
La forza non conservativa che agisce sul blocco è l'attrito, che compie un lavoro negativo sul blocco mentre si muove e converte l'energia cinetica in energia termica.
Immagina di spingere una sedia \(3\,\mathrm{m}\) su una superficie ruvida con una forza di spinta pari a \( F_p = 100\,\mathrm{N}\). La forza di attrito è \(F_f= 50\,\mathrm{N} \). Qual è il lavoro totale compiuto dalle forze non conservative che agiscono sulla sedia?
Fig. 3 - Il lavoro viene svolto da forze non conservative quando una sedia viene spinta su una distanza.
Le forze non conservative che agiscono sulla sedia sono la forza di attrito e la forza di spinta. Per trovare il lavoro compiuto da ciascuna forza non conservativa, dobbiamo moltiplicarle per la distanza percorsa e determinare se la forza compie un lavoro positivo o negativo sulla sedia.
Il lavoro svolto dalla forza di spinta è positivo perché il vettore della forza punta nella stessa direzione del movimento della sedia. Quindi il lavoro compiuto dalla forza di spinta è:
$$ \begin{aligned} W_p &= F_pd \\ &= \left(100\,\mathrm{N}\right) \left(3\,\mathrm{m}\right) \\ &= 300\,\mathrm{J} \end{aligned} $$
Il vettore della forza di attrito punta in direzione opposta rispetto al moto della sedia, quindi compie un lavoro negativo sulla sedia:
$$ \begin{aligned} W_f &= -F_fd \\ &= -\left(50\,\mathrm{N}\right) \left(3\,\mathrm{m}\right) \\ &= -150\,\mathrm{J} \end{aligned} $$
Dalla somma di queste, otteniamo il lavoro totale compiuto dalle forze non conservative sulla sedia:
$$ \begin{aligned} W_{nc} &= W_p + W_f \\ &= 300\,\mathrm{J} - 150\,\mathrm{J} \\ &= 150\,\mathrm{J} \end{aligned} $$
Forza conservative - Punti chiave
- Quando il lavoro compiuto da una forza è indipendente dalla traiettoria percorsa, questa forza è una forza conservativa. Il lavoro compiuto dalle forze conservative è reversibile.
L'energia meccanica si conserva quando in un sistema agiscono solo forze conservative.
Il lavoro compiuto dalle forze conservative è pari alla variazione negativa dell'energia potenziale.
Quando il lavoro compiuto da una forza dipende dal percorso seguito, questa forza è una forza non conservativa.
La variazione dell'energia meccanica è pari al lavoro compiuto dalle forze non conservative in un sistema.
La forza gravitazionale, la forza elastica e la forza elettrica sono esempi di forze conservative. L'attrito, la resistenza dell'aria e la forza di spinta/trazione sono esempi di forze non conservative.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel