Prodotto scalare e vettoriale

Mobile Features AB

Abbiamo visto cosa sono i vettori e come usarli, tuttavia, questi oggetti hanno un significato solo se possiamo svolgerci delle operazioni matematiche. La somma e la sottrazione dei vettori abbiamo visto essere molto semplice, ma per la moltiplicazione, invece? Dobbiamo distinguere tra prodotto scalare e prodotto vettoriale. Vediamo insieme cosa sono e come possiamo usarli per risolvere gli esercizi!

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

  • Fact Checked Content
  • Last Updated: 19.11.2022
  • 8 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Salta a un capitolo chiave

    Prodotto scalare e vettoriale: componenti di un vettore

    Prima di introdurre il prodotto scalare e quello vettoriale, dobbiamo introdurre il concetto di componenti di un vettore. Formalmente, le componenti di un vettore sono le proiezioni del vettore sugli assi del sistema di riferimento usato. Ma cosa vuol dire questa cosa? Vediamo un esempio molto semplice.

    Pensiamo di essere in una stanza e di voler descrivere un oggetto che si trova ad una certa distanza da noi.

    Possiamo pensare di definire un sistema cartesiano di cui noi siamo il centro e in cui abbiamo tre direzioni: la direzione destra-sinistra (in cui prenderemo la destra come verso positivo), la direzione avanti-indietro (in cui prenderemo avanti come verso positivo) e la direzione alto-basso (in cui prendiamo l'alto come verso positivo).

    Sfruttando questo sistema possiamo descrivere completamente la posizione di un oggetto con una terna di numeri, ovvero con un vettore! Se, ad esempio, nella stanza è presente una scatola 1 metro alla nostra sinistra, 2 metri davanti a noi e alla nostra stessa altezza, possiamo descrivere la posizione della scatola con il vettore \((-1,2,0)\). È importante notare il segno \(-\) davanti alla coordinata che descrive la posizione "destra-sinistra", perché abbiamo definito che le nostre coordinate sono positive quando l'oggetto si trova alla nostra destra!

    Se riprendiamo l'esempio che abbiamo appena visto, diremo che il vettore che descrive la posizione della scatola ha componenti \(-1\), \(2\) e \(0\).

    Di solito, quando facciamo esercizi o risolviamo problemi con i vettori, possiamo assumere sempre di lavorare in un sistema di riferimento a coordinate cartesiane. Il sistema cartesiano ha il vantaggio di essere estremamente intuitivo, perché le coordinate \(x, y, z\) corrispondono al concetto quotidiano di destra-sinistra, avanti-dietro e in alto-in basso.

    Prodotto scalare e vettoriale Sistema Cartesiano StudySmarterFig. 1 - Sistema di riferimento cartesiano

    Prodotto scalare: definizione

    Il prodotto scalare è un'operazione che associa a due vettori \(\vec{u}\) e \(\vec{v}\) un numero. In particolare, il numero che risulta dall'operazione di prodotto scalare è la somma dei prodotti delle componenti omonime dei vettori.

    Questo significa che presi i due vettori \(\vec{u} = (u_x, u_y, u_z)\) e \(\vec{v} = (v_x, v_y, v_z)\), il prodotto scalare tra i due vettori sarà

    \[\vec{u}\cdot\vec{v} = u_x v_x + u_y v_y + u_z v_z\, .\]

    Alternativamente, il prodotto scalare si può scrivere come il prodotto dei moduli dei due vettori per il coseno dell'angolo \(\theta\) compreso tra di loro:

    \[\vec{u} \cdot \vec{v} = \|u\| \, \|v\| \, \cos\theta\,.\]

    In questo articolo vedremo solo il prodotto scalare canonico con vettori di \(\mathbb{R}^3\), ovvero di vettori a valori reali nello spazio cartesiano formato da \((x, y,z)\). Le definizioni si possono estendere anche a casi a più dimensioni, semplicemente aggiungendo componenti!

    Il simbolo di prodotto scalare tra due vettori è indicato con un pallino centrale tra i due vettori "\(\cdot\)".

    Prodotto scalare: proprietà

    Il prodotto scalare ha alcune proprietà che possono tornare comode durante gli esercizi:

    1. Proprietà commutativa: \[\vec{u} \cdot \vec{v} = \vec{v} \cdot\vec{u}\,.\]
    2. Omogeneità: \[(\lambda \vec{u})\cdot \vec{v} = \lambda (\vec{u}\cdot\vec{v}) = \vec{u}\cdot (\lambda \vec{v})\, ,\] dove \(\lambda\) è un numero reale.
    3. Proprietà distributiva rispetto alla somma:\[(\vec{u}+\vec{v})\cdot\vec{w} = \vec{u}\cdot\vec{w} + \vec{v}\cdot\vec{w}\,,\]\[\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}\,.\]
    4. Se \(\hat{x},\hat{y},\hat{z}\) sono i versori del sistema di riferimento che consideriamo, possiamo dire che il prodotto scalare tra versori diversi vale \(0\) perché sono perpendicolari tra loro, mentre tra versori uguali, vale \(1\).\[\hat{x}\cdot\hat{y}=\hat{y}\cdot\hat{z}=\hat{z}\cdot\hat{x}= 0\,,\]\[\hat{x}\cdot\hat{x}=\hat{y}\cdot\hat{y}=\hat{z}\cdot\hat{z}=1\,.\]
    5. Il prodotto scalare è nullo se i due vettori sono perpendicolari: \[\vec{u} \perp \vec{v} \iff \vec{u}\cdot\vec{v} = 0\,.\]

    Prodotto vettoriale: definizione

    Contrariamente al prodotto scalare, il prodotto vettoriale associa a due vettori \(\vec{u}\) e \(\vec{v}\) un terzo vettore \(\vec{w}\).

    In particolare, il modulo del vettore risultante è dato da

    \[\|\vec{w}\|=\|\vec{u} \times \vec{v}\| = \|\vec{u}\|\, \|\vec{v}\| \sin\theta\, ,\]

    dove \(\theta\) è l'angolo compreso tra i due vettori.

    Per capire la direzione e il verso del vettore, possiamo usare la regola della mano destra, si mette il pollice della mano destra nella direzione e nel verso di \(\vec{u}\), l'indice nella direzione e nel verso di \(\vec{v}\) e se si estende il dito medio perpendicolarmente al palmo della mano, si ottengono la direzione e il verso del vettore risultante \(\vec{w}\).

    Ma se ci interessassero le componenti del vettore? Non lo dimostriamo, ma si può vedere che il vettore risultante ha componenti \((u_yv_z-u_zv_y , u_zv_x-u_xv_z, u_xv_y-u_yv_x) \).

    Vediamo come si possiamo ricavare le componenti in questo approfondimento:

    Un modo per ricavare le componenti del vettore risultante dal prodotto vettoriale di altri due vettori si può usare un piccolo "trucchetto": possiamo costruire una matrice con i versori del sistema di riferimento e i due vettori di cui vogliamo eseguire il prodotto vettoriale, il determinante di questa matrice ci darà le componenti del vettore risultante.

    \[\vec{u}\times\vec{v} = \text{det}\begin{bmatrix}\hat{x} &\hat{y} &\hat{z}\\u_x & u_y & u_z\\v_x & v_y & v_z\end{bmatrix}=\begin{bmatrix}u_yv_z-u_zv_y \\u_zv_x-u_xv_z \\u_xv_y-u_yv_x\end{bmatrix}=\]

    \[=(u_yv_z-u_zv_y)\hat{x}+(u_zv_x-u_xv_z)\hat{y}+(u_xv_y-u_yv_x)\hat{z}\]

    Il vettore risultante avrà quindi componenti \((u_yv_z-u_zv_y , u_zv_x-u_xv_z, u_xv_y-u_yv_x) \), come visto poco fa!

    Prodotto vettoriale: proprietà

    Anche il prodotto vettoriale ha delle proprietà interessanti che possono essere utili nella risoluzione di esercizi e problemi.

    1. Proprietà distributiva rispetto alla somma: \[\vec{u} \times (\vec{v}+\vec{w}) =\vec{u}\times\vec{v} + \vec{u}\times\vec{w}\,,\]\[(\vec{u}+\vec{v})\times\vec{w}=\vec{u}\times\vec{w}+\vec{v}\times\vec{w}\,.\]
    2. Bilinearità: \[\lambda\vec{u} \times\vec{v}=\lambda(\vec{u}\times\vec{v})=\vec{u}\times\lambda \vec{v}\,,\] dove \(\lambda\) è un numero reale.
    3. Proprietà anticommutativa: \[\vec{u}\times\vec{v} = -\vec{v}\times\vec{u}\,.\]
    4. Se due vettori sono paralleli, il risultato del prodotto vettoriale è il vettore nullo: \[\vec{u} \parallel \vec{v} \iff\vec{u}\times\vec{v} = 0\,.\]

    Prodotto scalare e prodotto vettoriale - Punti chiave

    • Le componenti di un vettore sono le sue proiezioni sugli assi del sistema di riferimento.
    • Il prodotto scalare è un'operazione che associa a due vettori \(\vec{u}\) e \(\vec{v}\) un numero, si può anche vedere che il prodotto scalare può essere scritto come \(\vec{u} \cdot \vec{v} = \|u\| \, \|v\| \, \cos\theta\).
    • Il numero che risulta dall'operazione di prodotto scalare è la somma dei prodotti delle componenti omonime dei vettori: \(\vec{u}\cdot\vec{v} = u_x v_x + u_y v_y + u_z v_z \).
    • Contrariamente al prodotto scalare, il prodotto vettoriale associa a due vettori \(\vec{u}\) e \(\vec{v}\) un terzo vettore \(\vec{w}\).
    • Il modulo del vettore risultante è dato da\(\|\vec{w}\|=\|\vec{u} \times \vec{v}\| = \|\vec{u}\|\, \|\vec{v}\| \sin\theta\), dove \(\theta\) è l'angolo compreso tra i due vettori.
    • Per capire la direzione e il verso del vettore, possiamo usare la regola della mano destra, si mette il pollice della mano destra nella direzione e nel verso di \(\vec{u}\), l'indice nella direzione e nel verso di \(\vec{v}\) e se si estende il dito medio perpendicolarmente al palmo della mano, si ottengono la direzione e il verso del vettore risultante \(\vec{w}\).
    • Il vettore risultante dal prodotto vettoriale dei vettori \(\vec{u}\) e \(\vec{v}\) ha componenti \((u_yv_z-u_zv_y , u_zv_x-u_xv_z, u_xv_y-u_yv_x) \).

    References

    1. Fig. 1 - Cartesian coordinates.png (https://commons.wikimedia.org/wiki/File:Cartesian_coordinates.png) by Sommacal alfonso is licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
    Learn faster with the 0 flashcards about Prodotto scalare e vettoriale

    Sign up for free to gain access to all our flashcards.

    Prodotto scalare e vettoriale
    Domande frequenti riguardo Prodotto scalare e vettoriale

    Come si calcola il prodotto scalare dei vettori?

    Il prodotto scalare tra due vettori si calcola sommando i prodotti delle componenti omonime dei vettori, ovvero, se abbiamo due vettori, u e v, di componenti (ux, uy, uz) e (vx, vy, vz), il loro prodotto scalare sarà dato da u · v = uxvx + uyvy + uzvz.

    Cosa si intende per prodotto scalare?

    Per prodotto scalare si intende un'operazione matematica che associa a due vettori u e v un numero reale.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Iscriviti gratuitamente
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Fisica Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Iscriviti per sottolineare e prendere appunti. É tutto gratis.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Iscriviti con l'e-mail