Effetto Compton

L'effetto Compton è un importante fenomeno fisico che, nel 1927, è valso ad Arthur Compton il premio Nobel per la fisica. Ma di cosa si tratta? Qual è la sua importanza in fisica? Qual è l'esperimento che ha permesso di osservarlo? Questo e molto altro in questo articolo!

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Salta a un capitolo chiave

    Effetto Compton: in breve

    Effetto Compton Arthur Compton StudySmarterFig. 1 - Arthur Compton nel 1927.

    Prima di immergenci in una spiegazione più complessa e completa dell'effetto Compton, cerchiamo di capire di cosa si tratta in breve e con parole semplici.

    L'effetto Compton, osservato nel 1922 da Arthur Compton è un effetto che dimostra l'interazione tra un fotone e un elettrone. In particolare l'effetto Compton è uno dei risultati più importanti a favore della fisica quantistica, infatti dimostra che in alcune situazioni, la luce si comporta come fotoni.

    L'esperimento che per la prima volta ha permesso di osservare l'effetto Compton è molto semplice: un raggio di fasci di luce monocromatica (ovvero di una sola lunghezza d'onda molto specifica), viene fatto incidere su un elettrone. Quello che si osserva è un fenomeno per cui parte dell'energia del fotone viene ceduta all'elettrone ed entrambi vengono deviati. In particolare si vede che la lunghezza d'onda del fotone deviato è proporzionale all'angolo di cui viene deflesso.

    Effetto Compton: spiegazione

    Ora che abbiamo visto una spiegazione sommaria dell'effetto Compton, cerchiamo di approfondire, per quanto possibile, questo fenomeno con le nostre conoscenze di fisica quantistica. È infatti importante capire che questo fenomeno non può essere spiegato con la teoria classica e con la teoria oscillatoria della luce. Infatti, se la luce fosse un fenomeno puramente ondulatorio, il risultato che si osserverebbe sarebbe al più un'oscillazione dell'elettrone con la stessa frequenza della luce e la luce stessa non cambierebbe frequenza.

    Per rinfrescare le nozioni di fisica quantistica abbiamo diversi articoli sull'argomento su StudySmarter!

    Parte dell'importanza dell'esperimento è proprio il fatto che, dopo l'urto, il fascio di luce incidente, viene riemesso con una lunghezza d'onda diversa da quella iniziale. È proprio come una particella che, durante un urto, perde parte della sua energia.

    Effetto Compton Diagramma StudySmarterFig. 2 - Diagramma semplificato dell'effetto Compton, la linea ondulata rappresenta il fotone, inizialmente di lunghezza d'onda \(\lambda\) e dopo l'urto di lunghezza d'onda \(\lambda'\), in rosso è raffigurato l'elettrone e la sua traiettoria dopo l'urto. Il fotone, dopo l'urto viene deviato di un angolo \(\theta\).

    Ma perché parliamo proprio di perdere energia? Sperimentalmente si verifica che i fotoni deviati hanno una lunghezza d'onda \(\lambda'\) che è maggiore della lunghezza d'onda iniziale \(\lambda\). Come colleghiamo queste due informazioni?

    Ricordiamo che l'energia di un fotone è data dalla relazione di Planck:

    \[E = h \nu\,,\]

    dove \(E\) è l'energia del fotone, \(h\) è la costante di Planck (che vale \(6{,}626 \times 10^{-34}\,\mathrm{J}\: \mathrm{s}\)) e \(\nu\) la frequenza del fotone.

    Una prima impressione dovrebbe essere che l'energia dovrebbe aumentare! Bisogna però ricordare che frequenza e lunghezza d'onda sono legate dalla relazione di proporzionalità inversa

    \[c = \lambda\:\nu\,,\]

    dove \(c\) è la velocità della luce nel vuoto (circa \(3\times 10^8 \, \mathrm{m/s}\)). All'aumentare della lunghezza d'onda, quindi, la frequenza diminuisce, e di conseguenza anche l'energia del fotone.

    Parte dell'energia viene ceduta all'elettrone che viene messo in moto nella direzione indicata dalla freccia rossa in figura 2.

    Non dimostreremo questo fatto, perché richiede delle nozioni di fisica quantistica avanzate, ma si può dimostrare che la lunghezza d'onda del fotone deflesso è proporzionale all'angolo \(\theta\) della sua deflessione. In particolare, è proporzionale al coseno di questo angolo, secondo la relazione

    \[\lambda' = \lambda + \frac{h}{m_\mathrm{e} \, c} (1-\cos \theta)\,,\]

    dove \(\lambda\) e \(\lambda'\) sono le lunghezze d'onda del fotone prima e dopo l'interazione, \(h\) è la costante di Planck, \(m_\mathrm{e}\) la massa dell'elettrone e \(c\) la velocità della luce nel vuoto.

    Effetto Compton: importanza

    La domanda logica, giunti alla fine di questo articolo è, quindi, che applicazioni ha questo effetto? Perché dovrebbe importarci che un fotone, quando urta con un elettrone, perde parte della sua energia e viene deflesso?

    L'effetto Compton ha un'importanza fondamentale nella fisica moderna, tanto da aver portato ad Arthur Compton il premio Nobel per la fisica nel 1927, 5 anni dopo la prima osservazione del fenomeno.

    È importante soprattutto come ulteriore verifica del dualismo onda particella della luce, dimostrando che la luce si comporta anche come particelle e non solo come onde. In pratica dimostra che la luce, in base al fenomeno osservato, si può comportare in un modo o nell'altro.

    Effetto Compton inverso

    L'effetto Compton che abbiamo descritto vale quando l'energia del fotone è molto più grande dell'energia dell'elettrone. Tuttavia, esiste anche il cosiddetto effetto Compton inverso, in cui un elettrone molto più energetico del fotone contro cui incide genera un fotone estremamente energetico. Questo fenomeno è importante in campo astrofisico e in astronomia, in cui gli elettroni dei raggi cosmici possono generare fasci di luce di energie elevatissime.

    Effetto Compton - Punti chiave

    • L'effetto Compton, osservato nel 1922 da Arthur Compton, è un effetto che dimostra l'interazione tra un fotone e un elettrone.
    • Nell'esperimento di Compton un raggio di fasci di luce monocromatica (ovvero di una sola lunghezza d'onda molto specifica), viene fatto incidere su un elettrone. Quello che si osserva è un fenomeno per cui parte dell'energia del fotone viene ceduta all'elettrone ed entrambi vengono deviati.
    • In particolare si vede che la lunghezza d'onda del fotone deviato è proporzionale all'angolo di cui viene deflesso.
    • Parte dell'energia del fotone viene ceduta all'elettrone che viene messo in movimento.
    • La lunghezza d'onda del fotone deviato è data da \(\lambda' = \lambda + \frac{h}{m_\mathrm{e} \, c} (1-\cos \theta)\), dove \(\lambda\) e \(\lambda'\) sono le lunghezze d'onda del fotone prima e dopo l'interazione, \(h\) è la costante di Planck, \m_\mathrm{e}\) la massa dell'elettrone e \(c\) la velocità della luce nel vuoto.
    • L'effetto compton ha un'importanza fondamentale nella fisica moderna, tanto da aver portato ad Arthur Compton il premio Nobel per la fisica nel 1927, 5 anni dopo la prima osservazione del fenomeno.
    • Esiste un effetto Compton inverso che ha applicazione in campo astrofisico.

    References

    1. Fig. 2 - Compton-1.png (https://commons.wikimedia.org/wiki/File:Compton-1.png) by Svjo is licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
    Domande frequenti riguardo Effetto Compton

    Cosa dimostra l'effetto Compton?

    L'effetto Compton dimostra che la luce, nella sua interazione con un elettrone, si comporta come una particella.

    Save Article

    Metti alla prova le tue conoscenze con schede a scelta multipla

    Quando è stato effettuato l'esperimento che ha permesso di osservare l'effetto Compton?

    Quando ricevé Arthur Compton il premio Nobel per la fisica?

    Quale formula descrive l'energia di un fotone?

    Avanti

    Discover learning materials with the free StudySmarter app

    Iscriviti gratuitamente
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Fisica Teachers

    • 6 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Iscriviti per sottolineare e prendere appunti. É tutto gratis.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Iscriviti con l'e-mail