Pressione atmosferica

Se hai fatto un viaggio in aereo, ti è mai capitato di provare dolore alle orecchie o un fastidioso senso di ovattamento durante il decollo o l'atterraggio? Questa sensazione spiacevole è causata dei rapidi cambiamenti di pressione dell'aria. In questo articolo vedremo cos'è la pressione atmosferica, come è stata misurata per la prima volta e quali sono i fattori che la influenzano. Iniziamo!

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Need help?
Meet our AI Assistant

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Pressione atmosferica?
Ask our AI Assistant

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Salta a un capitolo chiave

    Pressione atmosferica: definizione

    Così come ogni altro fluido, l'aria esercita una pressione sui corpi che vi sono immersi. La pressione atmosferica è, quindi, la pressione dovuta al peso della colonna d'aria che grava su una superficie.

    La pressione atmosferica è definita come il rapporto tra il peso della colonna d'aria che preme su una data superficie e la superficie stessa.

    Pressione atmosferica peso colonna d'aria StudySmarterFig. 1 - Come qualunque altro fluido, l'aria esercita una pressione data dal peso della colonna d'aria sovrastante i corpi.

    Se ti ricordi la legge di Stevino (qui su StudySmarter trovi un articolo dedicato!), ti aspetterai che la pressione esercitata dalla colonna d'aria non sia costante, ma vari con la quota. Questo infatti è ciò che accade! Ma prima di vedere come la pressione decresce con l'altitudine, vediamo come fu misurata per la prima volta!

    Pressione atmosferica: il tubo di Torricelli

    Evangelista Torricelli scoprì per primo che l'atmosfera esercita una pressione e ideò uno strumento per misurarla. Tale strumento è chiamato tubo di Torricelli o barometro di Torricelli. Vediamo come funziona!

    Pressione amtosferica esperimento Torricelli StudySmarterFig. 2 - Esperimento di Torricelli.

    In una vaschetta contenente mercurio viene posto un tubo chiuso all'estremità in alto e aperto all'estremità in basso, come mostrato nella Figura 2. All'interno del tubo viene fatto il vuoto.

    Poiché l'atmosfera esercita una pressione sul mercurio nella contenitore ma non sul mercurio all'interno del tubo (l'estremità in alto del tubo è chiusa), il mercurio risale lungo il tubo fino a quando il sistema non raggiunge la condizione di equilibrio. Quest'ultima è raggiunta quando il valore della pressione atmosferica uguaglia quello della pressione esercitata dalla colonna di mercurio all'interno del tubo.

    Dalla legge di Stevino si ha:

    \[P_\mathrm{Hg} = \rho_\mathrm{Hg} g h\,, \]

    dove \(\rho_\mathrm{Hg}\) è la densità del mercurio e \(h\) è l'altezza della colonna di mercurio nel tubo rispetto al livello del mercurio nel contenitore.

    All'equilibrio vale la seguente relazione:

    \[P_\mathrm{atm} = P_\mathrm{Hg}= \rho_\mathrm{Hg} g h\,. \]

    Quindi, la misura di \(h\) permette di ricavare il valore della pressione atmosferica \(P_\mathrm{atm}\) (le altre quantità sono note). Torricelli misurò il seguente valore:

    \[h = 760\, \mathrm{mm}\,. \]

    Da questo risultato capiamo come mai la pressione atmosferica è a volte misurata in millimetri di mercurio (\(1\, \mathrm{mmHg}= 1\, \mathrm{torr}\))!

    Nella sezione successiva vedremo quali sono le diverse unità di misura della pressione atmosferica. Possiamo intanto anticipare che 760 millimetri di mercurio equivale a 1 atmosfera:

    \[1\, \mathrm{atm} = 760\, \mathrm{mmHg}\,. \]

    Pressione atmosferica: unità di misura

    Riprendendo la formula

    \[P_\mathrm{atm} = \rho_\mathrm{Hg} g h\,, \] e inserendo i dati, otteniamo:

    \[P_\mathrm{atm} = \bigl ( 13{,}6 \times 10^3 \, \mathrm{kg}/\mathrm{m^3} \bigr ) \times \bigl ( 9{,}81\, \mathrm{m}/\mathrm{s^2} \bigr) \times \bigl (0{,}76\, \mathrm{m} \bigr ) \approx 1{,}013 \times 10^5 \, \mathrm{N}/\mathrm{m^2}\,. \]

    Nei calcoli abbiamo utilizzato il valore della densità del mercurio a \(T = 0 ° \mathrm{C}\), ovvero, \(\rho_\mathrm{Hg}= 13,6 \cdot 10^3 \, \mathrm{kg}/\mathrm{m}^3\).

    Questo valore della pressione è valido in condizioni standard, ovvero, a livello del mare (altitudine zero), a una latitudine di \(45°\) e a una temperatura di \(0 ° \mathrm{C}\). Vedremo più avanti che la pressione varia con la quota e con la temperatura.

    Nel SI l'unita di misura della pressione è il Pascal e corrisponde a un newton su metro quadro: \( 1 \, \mathrm{Pa} = 1 \, \mathrm{N}/\mathrm{m}^2\). Quindi, utilizzando le unità di misura nel SI, possiamo scrivere:

    \[P_\mathrm{atm} \approx 1{,}013 \times 10^5 \, \mathrm{Pa}\,. \]

    o, più precisamente:

    \[ P_\mathrm{atm} = 101\,325 \, \mathrm{Pa}\,.\]

    Le unità di misura della pressione atmosferica includono le seguenti:

    • il pascal (\(\mathrm{Pa}\));
    • l'atmosfera (\(\mathrm{atm}\)): \(1 \mathrm{atm} = 101\,325 \, \mathrm{Pa}\).
    • il torr: \( 1 \, \mathrm{torr} = 1 \, \mathrm{mmHg} = 133{,}32 \, \mathrm{Pa}\);
    • il bar (\(\mathrm{bar}\)): \(1 \, bar = 10^5 \, \mathrm{Pa} \) .

    Variazione della pressione atmosferica con la quota

    Abbiamo visto che, in condizioni standard (altitudine zero, latitudine di \(45°\) e \(T=0 ° \mathrm{C}\) ), la pressione atmosferica è pari a \( P_\mathrm{atm} = 101\,325 \, \mathrm{Pa}\). Cosa avviene se saliamo di quota? Si potrebbe pensare che la pressione vari linearmente con la quota \(z\), secondo la legge che abbiamo visto per i liquidi, ovvero, la legge di Stevino: \(P= \rho g z\). Tuttavia, nel caso dell'aria, la situazione è più complessa. Infatti, dobbiamo tener conto che la densità dell'aria diminuisce (in altre parole, diventa più rarefatta), con la quota. Questo significa che gli strati più alti dell'atmosfera portano un contributo minore rispetto al contributo portato dagli strati più bassi!

    Quindi, applicando la legge di Stevino \(P= \rho g h\) a tutta l'atmosfera (\(h \approx 100\, \mathrm{km}\)), otterremo un risultato sbagliato (molto maggiore del valore corretto) perché stiamo assumendo \(\rho= \mathrm{costante}\).

    Si può dimostrare che la variazione di pressione con la quota non è lineare come nel caso dei liquidi. Assumendo un'atmosfera isoterma, la pressione segue il seguente andamento con la quota:

    \[P = P_0 e^{-z/\alpha}\,, \]

    dove \(P_0\) è il valore della pressione atmosferica in condizioni standard e \(\alpha \approx 8\, km\) a \(T= 0° \mathrm{C}\). Quindi, a circa \( 8 \, km\), la pressione si riduce di circa un terzo!

    Se vuoi sapere come arrivare a questa funzione, dai un'occhiata all'approfondimento che trovi di seguito!

    Supponendo che l'atmosfera sia isoterma e applicando la legge dei gas perfetti (per un ripasso sulle leggi dei gas, dai un'occhiata al nostro articolo su gas perfetti e reali!), possiamo scrivere:

    \[ P V = \mathrm{costante}\,.\]

    Poiché il volume è inversamente proporzionale alla densità, possiamo scrivere

    \[ \frac{P}{\rho} = \mathrm{costante}\,.\]

    Questo significa che il rapporto tra pressione e densità rimane costante con la quota. Questo equivale a scrivere

    \[ \frac{P_0}{\rho_0} = \frac{P}{\rho}\,,\]

    dove \(P_0\) e \(\rho_0\) sono, rispettivamente, i valori di pressione e densità al livello del mare (quota \(z=0\)) e \(P\) e \(\rho\) sono, rispettivamente, i valori di pressione e densità a una generica quota \(z\). Possiamo quindi scrivere la seguente equazione per la densità:

    \[ \rho = \rho_0 \frac{P}{P_0}\,.\]

    Se consideriamo un'infinitesima variazione di quota \(dz\), possiamo utilizzare la legge di Stevino:

    \[dP = \rho g dz\,. \]

    Sostituendo l'espressione che abbiamo ricavato per \(\rho\) nell'equazione differenziale che abbiamo appena scritto otteniamo:

    \[\frac{dP}{dz} = - \rho g = - \rho_0 \frac{P}{P_0} g\,. \]

    Moltiplicando entrambi i membri per \(dz\) e dividendo per \(P\), otteniamo:

    \[\frac{dP}{P} = - \frac{\rho_0}{P_0} g dz\,. \]

    Ponendo \(\frac{P_0}{\rho_0 g} = \alpha\), possiamo scrivere:

    \[\frac{dP}{P} = - \frac{dz}{\alpha}\,. \]

    Per trovare la soluzione dobbiamo quindi integrare tra la quota \(z=0\) e la generica quota \(z\):

    \[ \int_{P_0}^P \frac{dP}{P} = - \frac{1}{\alpha} \int_0^z dz\,.\]

    Risolvendo l'integrale, abbiamo:

    \[ \ln (\frac{P}{P_0} ) = - \frac{z}{\alpha}\,,\]

    ovvero,

    \[ P = P_0 e^{-z/\alpha}\,.\]

    Questa legge constituisce una buona approssimazione della variazione di pressione con la quota, ma è bene ricordare che è stata ricavata assumendo un'atmosfera isoterma, ovvero, assumendo che la temperatura non vari con la quota!

    La variazione di pressione con la quota è il motivo per cui alcune persone provano dolore all'orecchio durante i viaggi in aereo. Infatti, i rapidi cambiamenti di pressione dell'aria nelle fasi di decollo e atterraggio possono causare un aumento della pressione sulla membrana timpanica. I sintomi associati più comuni sono senso di ovattamento, fischi, ronzii o dolore di varia intensità.

    Variazione della pressione atmosferica con la temperatura

    La temperatura dell'aria influisce sul valore della pressione atmosferica. Infatti, quando l'aria si scalda, tende a dilatarsi e, quindi, a diventare meno densa. Di conseguenza, nelle aree dove l'aria è più calda si registra generalmente una pressione più bassa e viceversa.

    Variazione della pressione atmosferica con l'umidità

    Anche l'umidità dell'aria influisce sulla pressione. Infatti, a causa della bassa densità dell'aria umida rispetto a quella secca, nelle zone con maggiore umidità vi è solitamente una pressione più bassa rispetto alle zone dove l'aria è secca.

    Pressione atmosferica - Punti chiave

    • La pressione atmosferica è definita come il rapporto tra il peso della colonna d'aria che preme su una data superficie e la superficie stessa.
    • In condizioni standard, ovvero, a livello del mare (altitudine zero), a una latitudine di \(45°\) e a una temperatura di \(0 ° \mathrm{C}\), il valore della pressione è di \( 101\,325 \, \mathrm{Pa}\).
    • Le unità di misura della pressione amtosferica includono il pascal, l'atmosfera, il torr e il bar. Nel SI la pressione si misura in Pascal: \( 1 \, \mathrm{Pa} = 1 \, \mathrm{N}/\mathrm{m}^2\).
    • La pressione atmosferica fu misurata per la prima volta da Torricelli tramite un apparato strumentale che divenne noto come tubo di Torricelli.
    • Quota, temperatura e umidità influenzano il valore della pressione atmosferica.
    • La pressione atmosferica decresce con la quota in modo non lineare. Assumendo un'atmosfera isoterma, l'andamento della pressione con la quota è descritto dalla seguente funzione: \( P = P_0 e^{-z/\alpha}\), dove \(\alpha \approx 8\, km\) a \(T= 0° \mathrm{C}\).
    Domande frequenti riguardo Pressione atmosferica

    Cos'è la pressione atmosferica e da quali fattori dipende? 

    La pressione atmosferica è la pressione dovuta al peso della colonna d'aria che grava su una data superficie. Essa varia con la quota, la temperatura e l'umidità dell'aria.  

    Quando la pressione atmosferica è alta? 

    In generale, la pressione atmosferica è alta per basse temperature e bassa umidità. Infatti, la pressione non varia soltanto con la quota, ma anche con la temperatura e l'umidità. Nello specifico, quando l'aria si scalda tende a diventare meno densa e, quindi, la pressione si abbassa. Quando l'umidità dell'aria sale, la pressione si abbassa poichél'aria umida è meno densa di quella secca.

    Save Article

    Metti alla prova le tue conoscenze con schede a scelta multipla

    La pressione atmosferica ____ con l'altitudine.

    Chi fu a scoprire che la pressione esercita una pressione?

    Quale equazione rappresneta la variazione di presisone con la quota?

    Avanti

    Discover learning materials with the free StudySmarter app

    Iscriviti gratuitamente
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Fisica Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Iscriviti per sottolineare e prendere appunti. É tutto gratis.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Iscriviti con l'e-mail