Teorema di Coulomb: definizione
Da non confondersi con la legge di Coulomb, il teorema di Coulomb che permette di calcolare il campo elettrico alla superficie di un conduttore e di trarre alcune importanti conclusioni su come funzionano i conduttori.
Vediamo la definizione del teorema di Coulomb:
Dato un corpo conduttore di cui densità di carica superficiale \(\sigma\), il campo elettrico vicino alla superficie è dato da
\[\boxed{\vec{E} = \frac{\sigma}{\epsilon_0}\hat{n}}\]
In pratica, si osserva che il campo elettrico in prossimità della superficie di un conduttore è perpendicolare alla superficie (\(\hat{n}\) indica il versore normale alla superficie) e il suo valore è direttamente proporzionale alla densità di carica superficiale. Come in molte equazioni in elettrostatica, compare il fattore costante \(\epsilon_0\) che rappresenta la costante dielettrica del vuoto.
Teorema di Coulomb: dimostrazione
In questa sezione daremo una breve dimostrazione del teorema di Coulomb. Si tratta di una dimostrazione per chi ha un po' di dimestichezza con calcoli di differenziali e vettoriali, ma cercheremo di darne una descrizione sufficientemente generale da poter essere apprezzata da tutti.
Fig. 1 - Schema della dimostrazione del teorema di Coulomb.
Se guardiamo una superficie carica molto da vicino possiamo approssimarla ad una superficie piana (pensiamo ad una sfera, quando la guardiamo molto da vicino, sembra quasi piatta - così come l'orizzonte ci appare piatto nonostante il nostro pianeta non lo sia), se abbiamo una superficie piana carica sappiamo da quello che abbiamo già visto sull'elettrostatica che il campo elettrico \(\vec{E}\) sarà perpendicolare alla nostra superficie (come si vede in figura 1).
Una volta fatta questa considerazione, in realtà, abbiamo già fatto molto del lavoro! Infatti se ora pensiamo di prendere un cilindro di base infinitesima \(\mathrm{d}s\) e altezza infinitesima \(\mathrm{d}h\), possiamo calcolare il flusso del campo elettrico attraverso la sua superficie usando il teorema di Gauss. Se ricordiamo, possiamo fare lo stesso ragionamento che abbiamo fatto per dimostrare il teorema di Gauss e vedere che l'unica componente non nulla del flusso del campo elettrico attraverso la superficie è quella che attraversa la base \(\mathrm{d}s\), perché le altre componenti si annullano a due a due.
Quindi, se pensiamo che la densità di carica del cilindro in \(\mathrm{d}s\) sia data da \(\sigma\), possiamo calcolare il flusso infinitesimo passante per \(\mathrm{d}s\) come
\[\mathrm{d}\Phi = \vec{E}\cdot\mathrm{d}\vec{s}\,.\]
Il teorema di Gauss ci dice che il flusso attraverso una superficie chiusa è dato dalla quantità di carica totale racchiusa all'interno della superficie. È importante anche il fatto che il campo \(\vec{E}\) e la superficie \(\mathrm{d}\vec{s}\), che è orientata, sono paralleli. Inoltre, siccome abbiamo un corpo omogeneo carico, dobbiamo usare la densità di carica nella formula infinitesima (che poi, una volta integrata ci darebbe la carica totale), da cui
\[\mathrm{d}\Phi = \vec{E}\cdot \mathrm{d}\vec{s} = \frac{\sigma}{\epsilon_0}\,\mathrm{d}s\,.\]
Ovvero, se vogliamo il campo, otteniamo
\[\vec{E}=\frac{\sigma}{\epsilon_0}\hat{n}\,.\]
Teorema di Coulomb: potere delle punte
Il potere delle punte (qualche volta chiamato effetto punta o potere disperdente delle punte) è un fenomeno che si osserva nei conduttori elettrici e che si lega direttamente al teorema di Coulomb.
Quando abbiamo un corpo con diversi raggi di curvatura, la carica tende a distribuirsi in modo che vi sia un campo elettrico più intenso in prossimità di zone più appuntite, come si vede in figura 2.
Fig. 2 - Schema dell'effetto punta.
Perché, però questo fenomeno è collegato al teorema di Coulomb? Se ci pensiamo, una maggior carica in una zona più appuntita vuol dire che anche la densità di carica sarà maggiore e quindi anche il campo elettrico.
Questo fenomeno spiega alcuni effetti fisici, come ad esempio il fatto che i fulmini tendono a colpire più facilmente strutture a guglia, come i parafulmini.
Teorema di Coulomb - Punti chiave
- Il teorema di Coulomb afferma dato che un corpo conduttore di cui densità di carica superficiale \(\sigma\), il campo elettrico vicino alla superficie è dato da \(\vec{E} = \dfrac{\sigma}{\epsilon_0}\hat{n} \), dove \(\hat{n}\) è il versore normale alla superficie e \(\epsilon_0\) è la costante dielettrica del vuoto.
- L'effetto punta o potere delle punte è legato alla distribuzione di carica su un corpo di forma non omogenea: la carica tende a distribuirsi preferenzialmente in zone più appuntite. Questo fenomeno spiega la preferenza dei fulmini a colpire strutture a guglia.
References
- Fig. 1 - Teorema di coulomb.jpg (https://it.wikipedia.org/wiki/File:Teorema_di_coulomb.jpg) by Matsoftware (https://it.wikipedia.org/wiki/Utente:Matsoftware) is licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)
- Fig. 2 - Effetto punta.svg (https://commons.wikimedia.org/wiki/File:Effetto_punta.svg) by A7N8X is licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel