Elettromagnetismo

I fenomeni elettrici e magnetici sono un'importante e invisibile parte della nostra quotidianità. Ogni apparato elettronico genera un campo elettromagnetico senza che noi ce ne accorgiamo, la luce dello schermo da cui stai leggendo questa pagina è rappresentabile come onde elettromagnetiche che viaggiano dallo schermo ai tuoi occhi. Lo studio di questi fenomeni ha portato alla creazione di una teoria solida e completa che riesce a spiegare un gran numero dei fenomeni classici che hanno a che fare con particelle cariche o materiali magnetici: l'elettromagnetismo.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Salta a un capitolo chiave

    Elettromagnetismo definizione

    L'elettromagnetismo è quella parte della fisica che studia i fenomeni elettrici e magnetici e come questi siano collegati tra di loro. A questo livello tratteremo solo l'elettromagnetismo classico, ma è bene sapere che esiste una branca della fisica quantistica chiamata elettrodinamica quantistica che è dedicata ad estendere l'elettromagnetismo anche a livello quantistico e non solo classico.

    L'elettromagnetismo è quella parte della fisica che studia i fenomeni elettrici e magnetici e come questi siano collegati tra di loro.

    Vediamo sintenticamente quali sono gli argomenti di studio trattati all'interno dell'elettromagnetismo:

    Elettrostatica e elettrodinamica

    L'elettrostatica e l'elettrodinamica studiano i campi elettrici e le cariche che li creano. Questi campi elettrici possono essere statici (materia di studio dell'elettrostatica) e generati da cariche ferme o variabili nel tempo e nello spazio e legati a particelle in movimento (nel caso dell'elettrodinamica).

    Questi studi sono particolarmente importanti perché i campi elettrici vanno a costituire essenzialmente metà di quello che è il campo elettromagnetico.

    campo elettrico campo elettrico carica puntiforme StudySmarterFig. 1 - Campo elettrico di una particella

    Corrente elettrica

    Lo studio della corrente elettrica all'interno dell'elettromagnetismo ha portato a importanti sviluppi per quello che riguarda l'unione degli studi sulle cariche elettriche a quelli sul magnetismo. Una delle scoperte più importanti è il fatto che un circuito percorso da una corrente elettrica genera un campo magnetico e viceversa, l'interazione magnetica variabile nel tempo è capace di generare una corrente elettrica!

    Questa scoperta apparentemente innocente ha aperto la porta alla formalizzazione delle equazioni di Maxwell e all'unificazione delle due discipline in quello che è l'elettromagnetismo.

    Magnetismo

    L'ultimo elemento dell'elettromagnetismo da definire è il magnetismo. Vediamo una definizione molto semplice:

    Il magnetismo è quel fenomeno che si osserva nel quotidiano quando osserviamo una calamita o una bussola. Si tratta infatti della branca che studia le proprietà dei materiali di attirare oggetti ferrosi.

    Come l'elettrostatica si basa sull'esistenza di cariche opposte che esercitano forze di attrazione l'una verso l'altra, il magnetismo si basa sull'esistenza di elementi di natura opposta: i poli magnetici. La differenza sostanziale tra i due sistemi, è che non esistono monopoli magnetici, ovvero elementi che presentano solo una delle due polarità.

    Equazioni di Maxwell e unificazione dell'elettromagnetismo

    Le equazioni di Maxwell sono il pilastro fondamentale dell'elettromagnetismo. Esprimono come il campo elettrico e magnetico sono legati, quali sono i vincoli di questa interazione e la loro evoluzione temporale. Queste quattro equazioni raggruppano altrettante importanti leggi dell'elettrodinamica e del magnetismo, estendendole e mostrando la simmetria che lega elettricità e magnetismo.

    Vediamo brevemente quali sono queste leggi e come possono essere descritte localmente nel vuoto.

    Legge di Gauss per il campo elettrico

    Questa legge, anche chiamata "legge del flusso elettrico", descrive la relazione che lega campo elettrostatico e le cariche elettriche che lo generano mettendo in luce che il flusso del campo elettrico attraverso una superficie chiusa dipende dalla carica racchiusa al suo interno.

    \[ \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \]

    Legge di Gauss per il campo magnetico

    La legge di Gauss per il campo magnetico dice che non esiste l'equivalente delle cariche elettriche per quanto riguarda il magnetismo (i cosiddetti monopoli), ma che esistono solo dipoli magnetici. Non solo, anche questa legge parla del flusso (del campo magnetico questa volta) e afferma che il flusso di un campo magnetico attraverso una superficie chiusa sarà sempre nullo.

    \[ \vec{\nabla} \cdot \vec{B} = 0 \]

    Legge di Faraday

    Questa legge descrive l'induzione di un campo elettrico da parte di un campo magnetico variabile nel tempo, principio fondamentale per alcuni tipi di generatore.

    \[\vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}\]

    Legge di Ampère-Maxwell

    Questa legge descrive come si possono generare campi magnetici, e in particolare afferma che un campo magnetico si può creare tramite semplici correnti elettriche, oppure da campi elettrici variabili (la cosiddetta corrente di spostamento).

    \[ \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \]

    Campo elettromagnetico

    Il campo elettromagnetico è la conseguenza diretta e logica delle equazioni delle equazioni di Maxwell; queste equazioni, assieme alla forza di Lorentz, possono descrivere le proprietà e le caratteristiche del campo elettromagnetico.Questo campo è presente localmente ovunque ci sia una distribuzione di carica elettrica o corrente elettrica variabili nel tempo e si propaga come onde elettromagnetiche.

    Come abbiamo detto, è formato dall'unione del campo elettrico e magnetico, perpendicolari tra loro e che si propagano con velocità (nel vuoto) \( c = \lambda \cdot f \approxeq 3\cdot 10^8 m/s \) nella direzione definita dal prodotto vettoriale tra i vettori dei due campi. In questa queazione \( \lambda \) rappresenta la lunghezza d'onda e \(f \) la frequenza della radiazione elettromagnetica associata al campo. I due campi, inoltre, oscillano sempre in fase, e le loro intensità sono legate dalla relazione \( E = c\cdot B\), che ci mostra che quando uno dei due è nullo, lo è anche l'altro.

    La propagazione del campo elettromagnetico dà origine alle onde elettromagnetiche che si propagano nel vuoto a velocità \( c \), mentre nei mezzi si propagano con una velocità \(v = c/n \) dove \(n \) rappresenta l'indice di rifrazione del mezzo in cui si propaga.

    Spettro elettromagnetico

    Lo spettro elettromagnetico è l'insieme dei valori di lunghezza d'onda (o frequenza) delle onde elettromagnetiche. Il nostro occhio è in grado di vedere solo una parte di queste frequenze (quella che chiamiamo luce visibile) e che è nel range tra \(\lambda \approx 390 nm\) e \( \lambda \approx 760 nm\) che corrispondono al violetto e il rosso.

    Tuttavia lo spettro elettromagnetico si spinge ben oltre quanto possiamo vedere. Vediamo qui di seguito una tabella con le principali classificazioni di onde elettromagnetiche in base alle loro lunghezze d'onda:

    Nome\( \lambda_{min} \)\( \lambda_{max} \)
    Raggi gamma-\( 10^{-11} m \)
    Raggi X\( 10^{-11} m \)\( 10^{-8} m \)
    Raggi ultravioletti\( 10^{-8} m \)\( 4\cdot 10^{-7} m \)
    Visibile\( 4\cdot 10^{-7} m \)\( 8\cdot 10^{-7} m \)
    Infrarossi\( 8\cdot 10^{-7} m \)\( 10^{-3} m \)
    Microonde\( 10^{-3} m \)\( 10^{-1} m \)
    Onde Radio\( 10^{-1} m \)-

    Elettromagnetismo - Punti chiave

    • L'elettromagnetismo è quella parte della fisica che studia i fenomeni elettrici e magnetici e come questi siano collegati tra di loro.
    • Elettrostatica e dinamica, magnetismo, correnti elettriche sono tutte discipline all'interno dell'elettromagnetismo.
    • Le equazioni di Maxwell governano l'unificazione delle forze elettriche e magnetiche.
    • Il campo elettromagnetico è la conseguenza diretta e logica delle equazioni delle equazioni di Maxwell; queste equazioni, assieme alla forza di Lorentz, possono descrivere le proprietà e le caratteristiche del campo elettromagnetico.
    • Lo spettro elettromagnetico è l'insieme dei valori di lunghezza d'onda (o frequenza) delle onde elettromagnetiche.
    Domande frequenti riguardo Elettromagnetismo

    Che cosa si intende per elettromagnetismo?

    L'elettromagnetismo è quella parte della fisica che studia i fenomeni elettrici e magnetici e come questi siano collegati tra di loro.

    Dove si trovano le onde elettromagnetiche?

    Le onde elettromagnetiche sono la manifestazione della propagazione del campo elettromagnetico, queste possono propagarsi nel vuoto a velocità c, oppure in un mezzo con una velocità ridotta dall'indice di rifrazione di quest'ultimo.

    Come si genera l'elettromagnetismo?

    L'elettromagnetismo si genera come conseguenza diretta del legame tra elettricità e magnetismo.

    Chi ha scoperto il campo elettromagnetico?

    Il campo elettromagnetico è stato scoperto da Maxwell, quando, unendo le leggi di elettricità e magnetismo note al tempo ha creato, attraverso le sue equazioni, la base teorica dell'elettromagnetismo.

    Save Article

    Metti alla prova le tue conoscenze con schede a scelta multipla

    Esistono i monopoli magnetici?

    Vero o Falso: le onde elettromagnetiche si propagano a velocità c nel vuoto.

    Qual è il range della luce visibile?

    Avanti

    Discover learning materials with the free StudySmarter app

    Iscriviti gratuitamente
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Fisica Teachers

    • 7 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Iscriviti per sottolineare e prendere appunti. É tutto gratis.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Iscriviti con l'e-mail