Polimeri

Mobile Features AB

I polimeri sono una parte fondamentale della nostra vita quotidiana e come vedremo hanno applicazioni in tanti diversi campi. Esempi di polimeri che utilizziamo quotidianamente sono il PVC e il polietilene, oltre ad altri materiali come i tessuti dei nostri vestiti, fatti di poliacrilammide. Da qui si evince l'importanza di una branca della chimica organica come quella dei polimeri. In questo articolo spiegheremo cosa sono i polimeri, come si formano e daremo un'occhiata ad alcuni tipi comuni di polimeri.

Get started

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Contents
Contents
  • Fact Checked Content
  • Last Updated: 12.10.2022
  • 10 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Salta a un capitolo chiave

    Il polietilene è uno dei polimeri più semplici, in quanto ha un solo elemento costitutivo: l'etene, comunemente chiamato anche etilene. Il polietilene si divide in HDPE (dall'inglese high-density polyethylene ovvero polietilene ad alta densità) e LDPE (low-density polyethylene ovvero polietilene a bassa densità).

    Le diverse proprietà fisiche dei due polimeri sono dovute alle interazioni intermolecolari dei polialcheni. I polialcheni interagiscono attraverso le loro lunghe catene polimeriche per creare specifiche proprietà fisiche. Ciò è dovuto a forze intermolecolari come le forze di van der Waals.

    • In primo luogo, daremo una definizione di polimeri e monomeri.
    • Poi ci addentreremo nel meccanismo di reazione della polimerizzazione per addizione.
    • Esamineremo alcuni esempi comuni di polimeri.
    • Infine, tratteremo brevemente i polimeri termoindurenti.

    Significato di polimero

    I polimeri sono costituiti da lunghe catene di unità monomeriche ripetute.

    La definizione di polimeri deriva da "poli" che significa molti. Questo perché i polimeri sono costituiti da molte unità ripetute chiamate monomeri.

    I monomeri sono solitamente piccole molecole che hanno la capacità (o la propensione) di formare polimeri grazie alla loro disposizione strutturale e alle loro proprietà chimiche. I polimeri sono quindi costituiti da un gran numero di monomeri uniti tra loro.

    La polimerizzazione è la reazione che produce i polimeri. Comprende la reazione di due monomeri per formare un dimero. I monomeri successivi possono essere aggiunti attraverso lo stesso meccanismo di polimerizzazione per garantire la crescita della catena polimerica. In questo modo si ottengono lunghe catene di polimeri a partire dagli stessi elementi costitutivi.

    Si noti che, grazie alla struttura monomerica delle subunità, lo stesso meccanismo di reazione e la stessa reazione (polimerizzazione) possono essere applicati per aggiungere altre subunità e allungare la catena polimerica. Questo è possibile solo quando i monomeri sono della stessa natura chimica.

    Struttura dei polimeri

    Esistono due meccanismi principali per produrre polimeri: la polimerizzazione per addizione e quella per condensazione. In questo articolo analizzeremo la polimerizzazione per addizione. Per saperne di più sulla polimerizzazione per condensazione, consultare l'articolo Polimerizzazione per condensazione.

    La caratteristica più importante che una molecola deve avere per subire la polimerizzazione per addizione è un doppio legame carbonio-carbonio.

    >C=C<

    Questo gruppo funzionale di base permette a qualsiasi molecola con un doppio legame di diventare un monomero per un potenziale meccanismo di polimerizzazione.

    Ciò avviene perché il doppio legame C=C può essere rotto, rendendo i due atomi di carbonio disponibili a formare nuovi legami. In questo caso, l'addizione sarà quella di monomeri simili, per cui si produrrà una catena polimerica sempre più lunga. Qui di seguito è schematizzato il modo in cui il doppio legame viene convertito in un legame singolo, che gli conferisce la capacità di legarsi ad altri composti.

    -[-C-C-]n-

    La "n" rappresenta il numero di blocchi ripetuti nella catena, a significare il numero di monomeri utilizzati per la creazione del polimero.

    È interessante notare che, grazie alla natura dei legami tra i monomeri, che sono legami singoli carbonio-carbonio, la struttura del polimero è piuttosto forte. Questo ha anche degli svantaggi, in quanto rende difficile la biodegradazione di questi composti. L'accumulo di queste sostanze polimeriche difficilmente biodegradabili (come le plastiche) contribuisce quindi al cambiamento climatico.

    Negli esempi che seguono, vedrai come questo si può applicare a qualsiasi sostanza organica che abbia un doppio legame.

    La cosa fondamentale da ricordare è che la presenza del doppio legame è solo la base necessaria per la reazione di polimerizzazione. Ai carboni coinvolti nella reazione di polimerizzazione possono essere attaccati diversi gruppi funzionali, che daranno origine a diversi tipi di polimeri con proprietà fisiche e chimiche molto diverse. Negli esempi, vedremo come diversi tipi di blocchi di partenza (monomeri) possono produrre polimeri diversi con proprietà diverse.

    Il metodo IUPAC per denominare i polimeri consiste nell'aggiungere il prefisso poli- al monomero del polimero. È importante ricordare che il monomero deve avere nomenclatura IUPAC.

    Il nome di qualsiasi polimero è il suo blocco di costruzione con il prefisso poli-.

    Esempi di polimeri

    Qui esploreremo diversi tipi di polimeri e come si formano a partire da diversi monomeri. Uno dei polimeri più semplici è il polipropene, il cui elemento costitutivo è il propene.

    Di seguito è riportato un diagramma di come il propene può trasformarsi in polipropene attraverso una reazione di polimerizzazione.

    Polimeri propene e polipropilene StudySmarterFigura 1. Polimerizzazione del propene per ottenere il polipropilene. Fonte: Lawrie Ryan, Cambridge AS and A Level, 2014

    Riesci a vedere come il doppio legame sia ridotto a un singolo legame, ma i carboni sono legati a gruppi aggiuntivi oltre le parentesi? Questo vuol dire che gli atomi di carbonio sono legati ad altri atomi di carbonio del propene, i suoi monomeri, per creare lunghe catene di polipropene.

    Nota che il gruppo metile (CH3) che si trova inizialmente legato ad un atomo di carbonio del propene, si ritrova anche nel polimero finale. Infatti, i gruppi chimici sostituenti attaccati ai carboni coinvolti nella reazione di polimerizzazione non vengono alterati quando vengono incorporati nei polimeri, quindi mantengono le loro proprietà e conferiscono nuove proprietà al polimero.

    Nell'esempio precedente, hai notato i requisiti necessari per la reazione di polimerizzazione? In questo esempio, i reagenti necessari per catalizzare la reazione di polimerizzazione sono (C2H5)3Al e TiCl4. Questi forti reagenti sono in grado di di consentire la reazione di polimerizzazione e trasformare la maggior parte dei composti con un doppio legame in lunghi polimeri.

    Osserviamo l'esempio seguente relativo al polifeniletilene noto come polistirene.

    Polimeri stirene e polistirene StudySmarterFigura 2. Polimerizzazione dello stirene (feniletilene) per formare il polistirene. Fonte: Lawrie Ryan, Cambridge AS and A Level, 2014

    Questa è la struttura del polistirene, di cui molto probabilmente hai sentito parlare nella tua vita. Riesci a capire come il gruppo fenile su uno dei carboni sia in grado di produrre un tipo specifico di polimero con le specifiche proprietà fisiche che gli associamo? Ciò è dovuto ai gruppi funzionali presenti sui monomeri. Ciò che differenzia il polistirene dal polipropene, come si è visto nell'esempio precedente, sono i gruppi legati ai carboni del doppio legame centrale. In questo modo, si possono creare polimeri diversi per diverse applicazioni.

    Ecco alcuni esempi comuni di polimeri che si differenziano per i gruppi funzionali: gomma, PTFE (comunemente chiamato Teflon), PVC, acrilico e Perspex. Questi polimeri fanno parte dello studio della chimica organica dei polimeri, in quanto si basano tutti sulla reazione di polimerizzazione tra i doppi legami dei loro monomeri.

    Qui approfondiremo il PVC.

    PVC sta per cloruro di polivinile o polivinilcloruro. È il nome comune del policloroetilene. A partire dal suo nome possiamo capire che il monomero del PVC è il cloroetilene.

    Il cloroetilene è una molecola di etene con un atomo di cloro legato ad uno dei carboni. Ciò significa che su un lato del doppio legame è presente un atomo di cloro.

    Quale sarà quindi la struttura complessiva del polimero? Ebbene, quando il polimero viene prodotto mediante polimerizzazione per addizione, su un lato del polimero ogni atomo alternato sarà un cloro. Ciò significa che nella struttura 3D della molecola, tutti gli atomi di cloro si allineeranno su un lato della catena polimerica. Ciò è dovuto all'ibridazione tetraedrica dell'atomo di carbonio.

    Di seguito è riportata una rappresentazione molecolare del PVC. Si noti come tutti gli atomi di cloro (in verde) si allineino su un lato del polimero.) Questo conferisce al polimero particolari proprietà fisiche.

    Polimeri polivinilcloruro PVC struttura StudySmarterFigura 3. Struttura molecolare in 3D del polivinilcloruro (PVC). Fonte: researchgate.net

    Il PVC può essere modificato con plastificanti per ottenere le proprietà fisiche necessarie per le diverse applicazioni.

    Il PVC è ampiamente utilizzato in diverse applicazioni, tra cui dispositivi medici, pavimentazioni, telai di finestre, isolamento di fili e cavi, imballaggi e tetti a trazione.

    Polimeri biologici

    Di solito quando si pensa ai polimeri si pensa a composti sintetici. Tuttavia, i polimeri sono presenti anche in natura, alcuni esempi sono le proteine e il DNA. Queste macromolecole della vita sono composte dagli stessi blocchi costitutivi. Pur essendo diverse in alcuni aspetti, le loro catene sono le stesse, il che consente loro di agire come monomeri e di produrre lunghe catene polimeriche.

    Nel caso delle proteine, gli amminoacidi sono i monomeri. Diversi amminoacidi si uniscono attraverso una reazione di polimerizzazione e creano lunghe catene proteiche che possono poi ripiegarsi e assumere diverse forme strutturali e funzioni biologiche.

    I monomeri del DNA sono invece i nucleotidi, ognuno dei quali ha una base diversa che può essere citosina (C), timina (T), adenina (A) o guanina (G). I nucleotidi sono costituiti da uno zucchero a 5 atomi di carbonio (desossiribosio) e da un gruppo fosfato. Le basi azotate sono attaccate allo zucchero e possono creare lunghi polimeri attraverso legami fosfodiesterei. Questi quattro tipi di monomeri si uniscono per creare una doppia elica di DNA e costituiscono il codice della vita. Le basi T si accoppiano con A, mentre le basi G si accoppiano con C nell'elica. Attraverso le reazioni di polimerizzazione, possono immagazzinare informazioni e organizzarle per creare esseri viventi.

    Polimeri termoindurenti

    I polimeri termoindurenti sono polimeri che cambiano drasticamente struttura quando viene applicato del calore al sistema.

    Poiché i polimeri sono spesso costituiti da lunghe catene, queste ultime sono spesso fluide e scivolano l'una sull'altra per creare un materiale simile ad un liquido. Esistono però alcuni polimeri che possono cambiare irreversibilmente il loro stato di materia in seguito al riscaldamento o all'aggiunta di determinate sostanze chimiche e fattori fisici.

    Quando si applica il calore al sistema, i polimeri termoindurenti formano legami incrociati tra le catene, producendo un solido. Ciò è dovuto al fatto che le lunghe catene polimeriche si reticolano in modo casuale e non organizzato.

    Per reticolazione si intende un legame chimico irreversibile tra un'estremità della lunga catena polimerica e una sezione casuale di un altro filamento polimerico.

    A causa della natura imprevedibile e casuale della reticolazione che si verifica, i polimeri termoindurenti producono una maglia solida. Ciò può avvenire attraverso il calore o l'aggiunta di altri agenti chimici come i catalizzatori. Un esempio di applicazione è la produzione di una resina, dove i catalizzatori vengono inseriti in una miscela di polimeri per consentire la reazione di reticolazione. Uno dei prodotti dell'interazione è il calore e quindi la resina si polimerizza diventando solida.

    Polimeri - Punti chiave

    • I polimeri sono lunghe catene di monomeri.
    • I monomeri dei polimeri di addizione hanno un doppio legame carbonio-carbonio, che consente la polimerizzazione per addizione.
    • I gruppi sostituenti sul carbonio non sono coinvolti nella reazione di polimerizzazione.
    • Alcuni polimeri comuni sono il PVC, il PTFE, il polietilene e la resina.
    • I polimeri termoindurenti sono polimeri che reticolano in seguito all'aggiunta di calore o di un catalizzatore, come una resina.
    Domande frequenti riguardo Polimeri

    Cosa sono i polimeri?

    I polimeri sono costituiti da lunghe catene di unità monomeriche ripetute. 

    Quanti tipi di polimeri esistono?

    Esistono tantissimi tipi di polimeri, in base alle diverse combinazioni di monomeri.

    Come si producono i polimeri?

    I polimeri si ottengono tramite due principali reazioni di polimerizzazione (di addizione, di condensazione) a partire dai monomeri.

    A cosa servono i polimeri?

    I polimeri hanno tantissime e diverse applicazioni nella nostra vita quotidiana. Sono usati per i tessuti dei nostri vestiti, rivestimenti di plastica, nell'industria medicale e tanti altri ancora.

    Quali polimeri si dicono viventi?

    I polimeri viventi si creano a partire da una polimerizzazione vivente, ovvero un tipo di polimerizzazione a catena in cui la catena polimerica continua a propagarsi, non ha quindi fase di terminazione.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Iscriviti gratuitamente
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Chimica Teachers

    • 10 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Iscriviti per sottolineare e prendere appunti. É tutto gratis.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Iscriviti con l'e-mail